Mercurial: The
Definitive Guide

Compiled from ed4aa276463e (2010-02-21)

Bryan O'Sullivan

Table of Contents

= o= PR Xi
O = o T o Y2 (= 1o P Xi
2. Thank you for supporting MEICUIIELciiuiei e e e e e e et e e e e eanns Xi
G AN a0 Y =0 o 11 £ Xi
4, Conventions USed iN ThIS BOOKciieuiiieiiiiiie ettt e e et s e e e et r e e e et neeeerenaeeees Xii
5. USING COUE EXAMPIES .. .eviiiiiieiiii e et e s et e e et e e et e e ean e eaneeennns Xii
6. SafAi® BOOKS ONIINEeuueiiiii ettt ettt e e et e e et r e e et e e e e et e e e e et e e e e enn s Xii
A oY (o I e g = ot O LSRRI Xiii

O o o T A o IR C 0 = 1= = 1
1.1. Why revision control? WHy MEICURIEl?cceunieiiiieii e e e e e e e et e e e e e e e eaneees 1

1.1.1. Why USE reVISION CONMIOI? .. eueiieei e e e e e e e s e e e e e et e e et e e e e e e an e e aaneeeens 1
1.1.2. The many names of reViSION CONIOLccouuiiiiiei e e e e e e e e 2
1.2. About the examples iN thiS DOOKoiiuiiiiii e e e e e e e aen 2
L3, TrendS iN the FIEIA ... e et e 2
1.4. A few of the advantages of distributed reviSion CONtrolocouuiiiiiiiiiii e 3
1.4.1. Advantages fOr OPEN SOUICE PrOJECESuuiveuieiet i eiei e e e e e e e e e e e e e e e e et e e e s e et e e e e eetnaeeanaees 3
1.4.2. Advantages for COMMEICIal PrOJECLSvuuuiiii it e e e e e e e e e e e e e e e e aenas 4
1.5. Why ChOOSE MEICUIEI?ieie ittt e e e e e e e e e e e et e et e e et e e e e e et e e et e e aneeeenss 4
1.6. Mercurial compared With Other t00ISoiiiii e e 4
G IS o Y= = o o PP 5
0L 02 U 5
0L T Y PPN 6
1.6.4. COMMENCIAl TOOIS .. .eeviieeeiii ettt e e ettt e e e et e e ettt e e e e et e e e et e e eeaannes 6
1.6.5. Choosing a revision CONLrol t0O0]ccouuiiiiiiii e e e e e e e 6
1.7. Switching from another t00l t0 MErCUITAloivuiiii e e e e e 6
1.8. A short history Of revision CONIOliiiiniii e e e e e e e an s 7

2. A tour of Mercurial: tE DESICSciiiii e 8

2.1, Installing Mercurial 0N YOUP SYSEEIM ...ouuuiiiieii e e e e e e e e e e e e e e et e e et e e et e e et e eean e eaneees 8
211 WINGOWS .ttt ettt e e ettt r e e e et e e e e eet e et e et r e e et it e e e e et e e ara e eanan 8
A Y - o © 1 3 G 8
P28 e T T 1 PP 8
0 S o - PSSP 8

A €= 11110 T - (= [8
2,20, BUI-IN NEID e 9

2.3. WOrking With @ FEPOSITOIYiiiiiiiii e e e e e e e e e e e e e et e e et e et e e aaneeeens 9
2.3.1. Making a local copy Of @ rEPOSITONYccuuiiiiiiieii e e e e e e e eeaas 9
A VAV o T = W (= 001 1 (o Y22 10

2.4, A toUr through NISLOY ... e e e e e e e e e e e e e e e e et e e e e eans 10
2.4.1. Changesets, revisions, and talking to other PeOPIEcvevniiiii i 11
2.4.2. VieWing SPECITIC TEVISIONScvuicii i ei e e e e e e e e e e e e e et neean e e eanees 12
2.4.3. More detalled iNfOrMBLIONoiieitii e e e e e e e e aeanas 12

2.5. All about COMMANA OPLIONScevuiii e e e e e e e e e et r e et e et e e et e e aaneaeenns 13

2.6. Making and reviewing ChaNQESoiiiuiiii e e e e e e e e e et e e e e e e e e ees 14

2.7. Recording changes in @anNew ChanNQESELccuuiiiiiii e e r e e eanas 15
2.7.1. SEING UP @ USEINBIMIE ... vvtieeiii et e eet e e et e et e e et e e et s e et e e ean e eat e e et e e et s eetn e ean e eanaeannaannnnaes 15
2.7.2. WIiting @ COMMIUT MESSAgE ..vuueveneiii i eeii ettt e e et e e et e e ettt e e e e e et e e et e e e e et e e et e e et e eetnaeeaneeanns 16
2.7.3. Writing a good COMMIT MESSATE ... vvuueireeiiiieeieeei e e et e e e e et e e e e e et e e e et e eeneeataeeanaeraneeaen 16
A AN o T4 11 T - Yoo 2 1 1 0 17
2.7.5. AdmMIring our NeW handiWOrKuiiiiii e e e e e e e e e eaneees 17

PR TS 0T 1 1o [7 1 L= 17
2.8.1. Pulling changes from another FEPOSITONYcvvuiiiii e e e e e e e e e e e aaees 17
2.8.2. Updating the WOorking dir€CtONYiieuiiii e e e e e e e e e e eees 18
2.8.3. Pushing changes to another repOSITOrYccouuiiiiii i 19
2.8.4. DEFAUIT TOCAIONSvueeeiii ettt e et e e e et r e e e et aeeeetbaeeeeatnaeeaes 20
2.8.5. Sharing changes OVEr @ NEIWOTKccvuieii i e e e e e e e e ean s 20

Mercuria: The Definitive Guide

2.9, SEArtiNG @ NMEW PIOJECTieeti ettt ettt ettt e et e ettt e ettt r e et et e ettt e e et et e e et et e e e e eba s 21
3. A tour of Mercurial: MErgiNg WOTKcoouuuiiiiii ettt ettt et eeerb e eenanns 22
3.1 Merging StrEAMS OF WOTKeiiiii ettt ettt e et e e e et e e e e b e e e aa s 22
311 HEBA CRANGESELS ... ettt ettt ettt e et e et e et a e e a b eenaaas 23
3.1.2. Performing the MEIQE .. .oove ettt e e 24
3.1.3. Committing the results Of the MEIGEcoouui i e 25

3.2. Merging CONfliCting ChaNGEScceeti e 26
3.2.1. Using a graphical MErge tOO0]oeiiiuiieiiiii et 27
3.2.2. A WOTKEH EXAMPIE ...ttt 27

3.3. Simplifying the pull-merge-CommMmIt SEOUENCEuiiiiiiee ittt eeeas 29
3.4. Renaming, COPYING, @NG MEITINGuiteruieeitiie ettt e et et e et e et e et et e e e et e e e e et e e eaba s 30
4. BENING TN SCENES ...ttt ettt e ettt e ettt e e et et e e et et e e ettt e e e e e e erb e aaes 31
4.1. Mercurial's NIStOriCal TECOIMuiiiiii et et e e e e e 31
4.1.1. Tracking the history of @ single file ... 31
4.1.2. Managing tracked filES e s 31
4.1.3. Recording changesat iNfOrMaLioNcouuiiiiiiii e 31
4.1.4. Relationships DEWEEN FEVISIONSciieiiieiiii ettt e e b 32

4.2, Saf@, EffICIENT SLOTAOE ... een ettt e e et e e aen 33
421, EffiCIONT SIOMBOE .. evve i eeeeiti et ettt 33
.22, SAFE OPEIBIION ...ttt 33
A.2.3. FASE TEIMEVAL ...t ettt 33
4.2.4. |dentification and StroNg INTEGIITYeeeetieeiii e e e e e e e e eenes 34

4.3. Revision history, branching, and MErgingoeeeuuui it 34
4.4, The WOIKING QIFECLONYcetiieieii ettt e e et et e e e e 35
4.4.1. What happens When YOU COMMITuiiiiiieeiiiie ettt e et e e e e e e e 36
4.4.2. Creating @aNEW NBAA ... e 37
4.4.3. MEIQING CRANGES ...ttt ettt e et e ettt e e et et e e et e b e e et et r e e e e e e e e ba s 38
4.4.4. MErging @0 FENAIMIEScceuuueieiti ettt e e ettt e b e et et e et et e et et e e e e ba e e e eba s 40

4.5. Other interesting deSigN FEAIUIEScioeii et 40
4.5.1. ClEVEN COMPIESSION ...ceitueieeiti ettt ettt et et e ettt e et ettt et e et e e et et r et e eaar e e e et e e e esbaaeeennen 40
4.5.2. Read/write ordering and atOMICITYccoeuuieiiiii e 40
4.5.3. CONCUIMENT GCCESS ... evuueertetet e et e et et et et et et e e et e et r et et e e ettt et neea e e et et et e e e e eenneeaaneen 41
A5.4. AVOITING SPEKS ...ttt 41
4.5.5. Other contents Of the irSIateooieiei e 41

B, MECUial TN TaIY USE ...t ettt e et e et e e e e enaans 43
5.1. Telling Mercurial Which fil@S 0 traCkooieeiiiiiiii e 43
5.1.1. Explicit versus implicit fille NAMINGoiiii e 43
5.1.2. Mercurial tracks files, NOt AIrECIOMNESivieiiiei e 43

5.2. HOW t0 StOP traCking @ fil@ ... oo e 44
5.2.1. Removing afile does not affect itS hiStOrYviiiiiiiii e 44
B.2.2. MISSING TIIES ..t e 45
5.2.3. Aside: why tell Mercurial explicitly to remove afil€?, 45
5.2.4. Useful shorthand—adding and removing fileSin One Stepovvviiiiiiiiiiii i 45

5.3 COPYING TIIES .ttt ettt 45
5.3.1. The results of copyYing dUMNG @ IMEIGEcceuuun ettt ettt e e 46
5.3.2. Why should changes fOllOW COPIES?uuiiiiiiiiei e 46
5.3.3. How to make changes Not fOIIOW @ COPY ...covvuriiiiiiieiiii e 47
5.3.4. Behavior of the hg COPY COMMENGuuiiiiiiiei e 47

B4, RENAMING FIIES .o ettt et e et e 48
5.4.1. Renaming files and merging ChangeSuiiiiuiiiiiii e 48
5.4.2. Divergent renames and MENGINGcceuuueeieruneeeeii et e et e ettt e e e et e e e ri e e eraa s 48
5.4.3. Convergent renames anNd MEFGINGccuuuueerruuneietie ettt e et e et e e et e e et e e eeb e eeenanas 49
5.4.4. Other NamME-relale0 COMMEI CASESiieitt ettt ettt ettt ettt e et et et e et e e e et eeeenannes 49

5.5. RECOVENNG FrOM MISIAKESottt ettt e e e e e e et e eeeab e eees 50
5.6. Dealing With trHCKY MENGESuiiiii et e e e e e s 50
5.6.1. File reSOIULION SLALEScovuueiiiti ettt ettt e e e et e e e e e e aa s 51
5.6.2. RESOIVING @ TIlE MEIGE ... e 52

B.7. MOFE USEFUL dIffS ettt ettt naaas 52

Mercuria: The Definitive Guide

5.8. Which files to manage, and WhiCh t0 @VOIdc.uiiiiiiii e 52
5.9. BaCKUPS @G MITTOMNG ... eeetneeeeete ettt ettt e ettt e e et et e e et et e e et et e e et et e e e eeban s 53
6. Collaborating With OtNEr PEOPIEttt ettt e e e e eaans 54
6.1. Mercurial's WED INTEITACEo et e 54
6.2. Collaloration MOGEISoiiiii e ettt e e e e et e eeeaans 54
6.2.1. Factors t0 KEED iN MING ..ot e ettt e e et e e e e e eees 54
6.2.2. INfOrmal @NAICHY ... e 55
6.2.3. A SINGIE CENLIal FEPOSITONYeevtieeeeit ettt e e ettt e ettt e ettt e e e et e e e et e e e eenaaeeees 55
6.2.4. A hosted CENtral FEPOSITONY ciieeiieieii et e et e et e e et e e eeba e eeees 55
6.2.5. Working with multiple BranChesooooiiiii e 56
6.2.6. FEALUIE DIaNCNESottt 57
B.2.7. ThE TEIEASE TrAIN .oovt ettt e et e s 58
6.2.8. The Linux Kernel MOTELooouuii e 58
6.2.9. Pull-only versus shared-push collaborationccouiiiiiiiiiiii e 58
6.2.10. Where collaboration meets branch managementooooiiiiiiii e 59

6.3. The technical Side Of SNAMNGc.uuuiiiii ettt 59
6.4. Informal Sharing With NG SEIVE ... et 59
6.4.1. A few things to KEep in MINGiiiiii e 59

6.5. Using the Secure Shell (SSh) ProtOCOliiiiiiei e 60
6.5.1. How to read and WIte SSh URLScooiuiiiiiii e e 60
6.5.2. Finding an ssh client fOr YOUI SYSEEMuiiiiiii et 60
6.5.3. GENEIAtNG @ KEY PAIT ...ttt ettt 60
6.5.4. Using an authentiCation GgENTcouuuiiiiiiei e 61
6.5.5. Configuring the server Side Properly e 61
6.5.6. UsSiNg compression With SSh ... 63

6.6. Serving OVer HTTP USING CGlovuiiiiiiiiieeciit ettt e e e e eaa s 63
6.6.1. Web server configuration CheCKlistiiieiiiii e 63
6.6.2. BaSIC CGl CONTIGUIALIONceuvteeiitie ettt ettt ettt e e e et e e e e eaa e e e enens 64
6.6.3. Sharing multiple repositories With 0ne CGl SCIPLciiviiiciii e 65
6.6.4. DOWNI0AdiNg SOUICE @rCHIVESuuiiiiii ettt ettt e et e e e s 66
6.6.5. Webh configuration OPLIONScoouuuieiiiii ettt e et e et e e e e e eees 66

6.7. SyStem-Wide CONFIGUIBLIONuueiiiit ettt ettt ettt ettt et e et e e e e et e e enae e eennes 68
6.7.1. Making Mercurial MOre trUSHINGccevuuniieiii ettt e e e 68

7. File names and Pattern MEECHINGcouuu ittt e e et e et e et et e e et et e e e e et e e e eeneaeeeees 69
7.1 SIMPLE FIl@ NMBIMING ...ttt ettt ettt et et e et e e e ebe s 69
7.2. Running commands Without any fil@ NAMESuuiiiiiiii e 69
7.3. TElliNg YOU WHEL'S GOIMQ Oeietieeeiiti ettt e et e et e et e e et et e e e e et 70
7.4. Using patterns to identify FIlES i 70
7.4.1. Shell-style gl 0D PAtEINS i e 70
7.4.2. Regular expression matching With 1 @ Patternso.uuieiiiiiiieiii e 71

7.5, FIIEING TIIES ..ottt e et et e e e e e e eaans 72
7.6. Permanently ignoring unwanted files and dir€CtONESuiiiiiiiiiiii e 72
T.7. €8BSR SENSILIVITY .. ieeitieieiit ettt ettt ettt e et et et e e e et et e et e r e e enaa e eee 73
7.7.1. Safe, portable repOSItOrY SIOTBOEu i iiiit ettt e e e enees 73
7.7.2. DEtecting Case CONFIICESuuniieii ettt e 73
7.7.3. FiXiNG @ CASE CONTIICEeietiieeeii et 73

8. Managing releases and branchy develOpMENT e 75
8.1. Giving a Persistent NAME T0 @ FEVISIONuuiiiiiii ettt ettt e et e et e eeaaa s 75
8.1.1. Handling tag coNnfliCtS dUriNg @ MEIGEuuiiiiiii ettt 77
8.1.2. TAUS AN ClONMING ... eteett ettt ettt ettt ettt et e et et e e ettt e e e et e e e e ebe e e ennas 77
8.1.3. When permanent tags are 100 MUCKiiiiiteiiii ettt e e 77

8.2. The flow of changes—hig picture VS, lITHEcoouun i e 77
8.3. Managing big-picture branches in rePOSITONESvieiiieiiei e 78
8.4. Don't repeat yourself: merging aCroSS branChesSuu.iiiii e 78
8.5. Naming branches Within 0ONe rePOSITONYuiiiiiii e 79
8.6. Dealing with multiple named branches in & repOSItOrYc..uiiiiiiiiii e 80
8.7. Branch NameS aN0 MENGINGcevuuneiiiti ettt ettt et e et e e et et e e et et e et e et e et est e e eeatn s eeeertnaeaees 82
8.8. Branch naming iS generally USEFULoiiiiiiiii e 82

Mercuria: The Definitive Guide

9. Finding and fiXiNg MISTAKEScoouuieiiii ettt e e et e e et e e e 83
9.1, Erasing [0Cal NISLOMYuiiiti ettt e e 83
9.1.1. The accidental COMMITottt ettt e et e e 83
9.1.2. ROIING DACK @ traNSACHIONiieitiee et 83
9.1.3. The @TONEOUS PUIL «...eieeet et 84
9.1.4. Rolling back is USEleSs 0NCE YOU'VE PUSNEMcovutiiiiiiiieec e 84
9.1.5. You can only roll DaCK ONCEcoeiiiiiie e e e 84

9.2. Reverting the Mistaken Changeooiiiiii e 84
9.2.1. File MANAJEMENT EITOIS ... iiiitt ettt ettt ettt e ettt e e et e et ea b e e e ettareeeeabn e e eentaaaeees 85

9.3. Dealing with COMMItted ChANGEScouuniiiii e 86
9.3.1. BaCKing OUL & ChaNGESELouuiiiiii ettt e e enaas 86
9.3.2. Backing out the tip ChaNQESELovieii e e 86
9.3.3. Backing OUt @ NON-tIP CRANJEceeitieeeiii ettt e e et e e e et e e ena e eees 87
9.3.4. Gaining more control of the DaCKOUL PrOCESSiiiiiiiieii e 89
9.3.5. Why hg backout WOrKS @S it GOESc.uuiiiiiiii e 91

9.4. Changes that should NEVEr NaVE DEENcciiii e 91
9.4.1. BACKING OUL 8 IMEIGE ...eeetieeeeiti e ettt e ettt e e ettt e e et et e e ettt e e et et e e et et e e e ettereeeeabaneeeentnnaeeee 92
9.4.2. Protect yourself from “escaped” ChangEScoouuuiiiiii e 95
9.4.3. What to do about sensitive changes that ESCAPEvvieriiiiiii e 96

9.5. FiNding the SOUICE Of @ UG ... cveeieiieiiii et 96
9.5.1. Using the hg DiSeCt comMMaNduuniiiiii e 97
9.5.2. Cleaning Up after YOUI SBAICKHiiiiii ettt 99

9.6. Tips for finding bugs effECHIVEIYcooun e 100
9.6.1. GIVE CONSISIENT INPUL ...ttt e et e et e e et e e e ene s 100
9.6.2. Automate @S MUCH 8S POSSIDIEcouii e 100
9.6.3. CNECK YOUN TESUITS ... et eeiett e ettt ettt ettt e e et e e ettt e e e et e e e et e e e e e nb e e e eenanaeeees 100
9.6.4. Beware interference DEtWEEN DUGScooovuiiiiiii e 100
9.6.5. Bracket your Search 1ZilYoouuiiiiiii e 101

10. Handling repository events With NOOKSiiiiii e 102
10.1. An overview of NOOKS iN MEICUIALuu it e e et e e e e eees 102
10.2. HOOKS 8NGO SECUITLY ...ttt ettt ettt e ettt e e et e e e et e e e e bt e e e enaa s 102
10.2.1. Hooks are run With YOUr PriviIEJEScoouuiiiiiii e 102
10.2.2. HOOKS dO NOt PrOPAJALEve i eeeeii ettt ettt e ettt ettt e e e e et e e e eeba e eeees 103
10.2.3. HOOKS CaN D& OVEITIATENoeeiiiiiii et 103
10.2.4. Ensuring that critical NOOKS 8I€ FUNc.uuiiiiiii e 103

10.3. A short tutorial 0N USING NOOKScoeutiiiiii e e eaens 104
10.3.1. Performing multiple aCtionS PEr @VENTu i 104
10.3.2. Controlling whether an activity Can ProCeEc.uuiiiiiiiiieiiiii e 104

10.4. WIIting YOUI OWN NOOKSceitiei ittt ettt e ettt e e e e bt eeeeaa e aees 105
10.4.1. Choosing how your hook SNOUI TUNeiiiiii e 105
10.4.2. HOOK PAIrEMELENS ...ttt ettt e et e et e e e e et e e e e eaa s 105
10.4.3. Hook return values and actiVity CONLIOLcoouuuiiiiiiie e 105
10.4.4. Writing an external NOOKooiiiii i e 105
10.4.5. Telling Mercurial to use an in-proCess NOOKcccuuiiieiiiiiiieii e 106
10.4.6. Writing an iN-proCesS NOOKeiiiiuiiiiii et enees 106

10.5. SOME hOOK EXAMPIES ...t et e e et e et e e s 106
10.5.1. Writing meaningful COMMIT MESSAgESuuiiiiiiieeiiii ettt 106
10.5.2. Checking for trailing Whit€SPaCeciveiiiiiiiii e 106

10.6. BUNAIED NOOKS ...ttt e et e e 108
10.6.1. acl —access control for partS of arePOSITONYccoevuiiiiiiiiie i 108
10.6.2. bugzi | | a—integration With Bugzillaooiiiiiiiiii e 109
10.6.3. not i fy—send email NOLITICALIONSccevuuiiiii e 112

10.7. Information fOr WILErS Of NOOKSuiiiiiii e 113
10.7.1. IN-Process NOOK EXECULTIONeiiitiieieii ettt e et e et e e e 113
10.7.2. EXternal NOOK EXECULTIONiiiitieeeiit ettt ettt et e et e e et e e e enta e eeenes 114
10.7.3. Finding out where changesets COME fIrOMiiiiiiiiie e 114

10.8. HOOK FEFEIEICE ceeeiieeeeet ettt ettt et et e e et e et et e e e eaa e e eenanns 115
10.8.1. changegr oup—after remote changesets addedooviiviiiiiiiiiii e 115

Mercuria: The Definitive Guide

10.8.2. conmi t —after anew changeset iS Createdccouuiiiiiiii i 115
10.8.3. i ncom ng—after one remote changeset isaddedcovviiiiiiiiiiiiiinic 115
10.8.4. out goi ng—after changesets are Propagatedueveeriieiieii e 116
10.8.5. pr echangegr oup—before starting to add remote changesetscovuvvviiiiiiiiiii e 116
10.8.6. pr econmi t —before starting to commit @ changeselcoveivviiiiiiiiiiie e 116
10.8.7. pr eout goi ng—before starting to propagate ChangeSatScovvvuieiiiiiiieeiiie e 117
10.8.8. pr et ag—before tagging & ChangeSatuiiiiiii i 117
10.8.9. pr et xnchangegr oup—nbefore completing addition of remote changesets...........c.cccuueeeenne. 117
10.8.10. pr et xnconmi t —before completing commit of new changesetcoooovviiviiiiinieennnn, 118
10.8.11. pr eupdat e—before updating or merging working direCtorycccooveiviiinieiiiiinneeennnnnn. 118
10.8.12. t ag—after tagging & ChaNQESELuuiiiiii e 119
10.8.13. updat e—after updating or merging Working direCtoryoovevevviieiiiiinieiiiii e 119

11. Customizing the OULPUE OF IMEICUIIELiiiii et eeeans 120
11.1. Using precanned OULPUL SEYIESuieiii ettt ettt ettt e e e e enaans 120
11.1.1. Setting @ default SEYIE . ..ooeee e 121

11.2. Commands that support styles and tEMPIELESviieriiiei e 121
11.3. The DasiCs Of tEMPIALING ittt e et e et e s 121
11.4. CommON tEMPIELE KEYWOISuuniiiiii ettt ettt e e e enanns 122
11.5. ESCAPE SEUUEICEScetueereeeti ettt et et e ettt et et e et ettt et et e et e et n et e et et et et e e e et e e e e 123
11.6. Filtering keywords to change theil FESUITSc.uuiiiiiii e 123
11.6.1. CombINING FITLEIS ... ettt 125

11.7. From templateS 10 SIYIES ...t 125
11.7.1. The SIMPIESt Of StYIE FIlES ... i e 125
11.7.2. SEYIE TIlE SYNEAX . ..vn ettt ettt e et e et e e e 126

11.8. Style fileS By EXAMPIE 126
11.8.1. Identifying mistakes in Style fllESu. i 126
11.8.2. Uniquely identifying @ rePOSITONYc..uuiiiiiii e 127
11.8.3. Listing files on MUITIPIE TINESiiii e 127
11.8.4. Mimicking SUDVErSION'S OULPULuuueiieiieieitie ettt e et e et e e 128

12. Managing change With Mercurial QUEUEScooeuuuiiiiii ettt e et 129
12.1. The patch management ProDIEIM i e e e e 129
12.2. The prehistory of Mercurial QUEUESuuiiiiiii ettt 129
12.2.1. A PatChWOrK QUITT ...t 129
12.2.2. From patchwork quilt to Mercurial QUEUESc.uuriiiiiiiiieiiii et 130

12.3. The huge advantage Of IMQuue ittt et e et e e et 130
12.4. UNderstanding PaLCNESeiiiiiieeeii e ettt 130
12.5. Getting started with Mercurial QUEUESiiiiiiiiiiiii et 131
12.5.1. Creating @ NEW PAICHiiiie e e 132
12.5.2. REfreshing @ PACRccoueiiiie e 132
12.5.3. Stacking and tracking PaIChESuiiiiii e 133
12.5.4. Manipulating the patch StACKu i 134
12.5.5. Pushing and popping Many PaiCESieieitueeeiii e 135
12.5.6. Safety checks, and overriding themoii i 135
12.5.7. Working on several PaiCheS @ ONCEcoeuuuniiiiiiii ettt 135

12.6. MOre @DOUL PEICHES ...ttt ettt ettt et et e et e e e e eaaas 135
12.6.1. THE ST COUNML ...iiitt ettt ettt ettt et et et e e e et e e e enb e e e enanas 135
12.6.2. Strategies for applying @ PaChiiiiiii e 136
12.6.3. Some quirks of patCh repreSentationocoeuuii i 136
12.6.4. BEWAIE the FUZZoiiii e 137
12.6.5. HANAIiNG FEJECHIONieeiiieeieii ettt et e et e et e e e s 137

12.7. More on patCh MaNBgEMENT ittt ettt e ettt e et eeeab s 137
12.7.1. Deleting unWanted PAICHESciiiieieiiii e 137
12.7.2. Converting to and from permanent reViSIONScccuuuieieiiiieieii et 138

12.8. Getting the best performance out Of MQccoouiiiiiii e 138
12.9. Updating your patches when the underlying code Changesoviiiiiiiiiiiiiiic e 139
12.10. 1dentifying PAICHES i ettt 139
12.11. Useful thingS t0 KNOW @DOULcceeetiiiiiiie et 140
12.12. Managing PatCheS iN @ FEPOSITONYceeuuuiiiiii ettt ettt ettt e et e e et eeeaan s 141

Vi

Mercuria: The Definitive Guide

12.12.1. MQ support for patCh rePOSITONESiiiiii e e 141
12.12.2. A few things to WaCh OUL FOFuiiiiii e 141
12.13. Third party tools for working With PatChesooveuiiiiiii e 141
12.14. Good ways t0 WOrK With PAICNESuuiiiiii et enees 142
12.15. MQ COOKBOOK ...ttt ettt e e et et e et e et e e e et e et e e aeans 142
12.15.1. Manage “trivial” PAICNEScouuuiiiiiii et 142
12.15.2. CombiniNg ENtIre PALCNEScceeiti ettt e et e e et e e e e e eee 144
12.15.3. Merging part of one patCh iNt0 @NONEYiiiiiiiiiiii e 144
12.16. Differences between quilt and MQcooiiiiiiiiii e 144
13. Advanced uses Of MErCUrial QUEBUESieuu ittt et e e e e e e e e e et e e e e et e e e et e e aa e e et e eeenaeeannns 146
13.1. The problem of MaNY TAIGELSciiiii et 146
13.1.1. Tempting approaches that don't WOrk WEllcooouiiiiiiiiii e 146

13.2. Conditionally applying patches With QUAITSccoouuiiiiiiiiii e 147
13.3. Controlling the guards 0N @ PaECHiiieii e 147
13.4. SElECting the QUAITS 1O USEceuuuiiiiii ettt ettt ettt e e et e et e e et eeeaaa e 148
13.5. MQ's rules for applying PAIChES oo e 148
13.6. Trimming the WOrk EnVIFONMENTiiiiii et e s 149
13.7. Dividing UP the SEri @S File i e 149
13.8. Maintaining the PALCN SEMESuu ittt e e 149
13.8.1. The art of writing backport PAICNESiiiiiiie e 150

13.9. Useful tips for developing With MQouiiiii et 150
13.9.1. Organising PatChes iN irECIOMESu.iiiiii e 150
13.9.2. Viewing the history Of @paiChooiiiiiiiiii e 150

14. Adding functionality With EXEENSIONScieiiiei i e 152
14.1. Improve performance with the i NOt i fy eXIenSIONooiiiiiiiiii e 152
14.2. Flexible diff support with the ext di ff eXtensioncooeviiiiiiiii 154
14.2.1. Defining COMMAND BlTBSESieeiiieeeiit ettt e e et e e et e e enb e eees 155

14.3. Cherrypicking changes with thet r anspl ant eXtensioncoouiviiiiiiiie e 156
14.4. Send changes via email with the pat chbomb extension ..., 156
14.4.1. Changing the behavior of patchBOmMBDSo, 156

AL MiIgrating 10 MEICUIIALunieiit ettt e ettt e ettt e e ettt e et eat e e e eenbn e aeen 158
A.L. Importing history from another SYSIEM ... 158
A.1.1. Converting MUItiple BranChESiiiiii e e 158
A.L2. MBPPING USEN NBIMIES ..eevtueeeettieeeeet e e eeat e e e eat e et eet e et eet e et eetaaeaeesta e e eeatn e eeesbnaeeeentnaaee 159
A.L3. TidYiNG UP TN TFEE ... et e et e e ettt e et et e e e era e aees 159
A.1.4. Improving Subversion conversion PErfOrMENCEveieuruieiiiii e 159

A.2. Migrating frOmM SUBVEISIONieeii e ettt eena e e enaans 160
A.2.1. Philosophical diffEreNCESoiiiii e e 160
YN @ N o Q= = 0o 161

A3, USEFUL TIPS FOF NEWCOMIEY'S ...ttt et e e e b e e e e 162
B. Mercurial QUEUES FEFEIEINCEceui ittt ettt e et e e e e e et e e et e e e e e e aa e e eaneeeannns 163
B.1. MQ COMMENG FEFEIENCE ... ettt et e e e e e et e e et e e et e e eaeaeanaas 163
B.1.1. gapplied—print applied PatChEScooouiii e 163
B.1.2. gcommit—commit changes in the QUEUE rEPOSITONYvvveriuiiiiii e 163
B.1.3. gdelete—delete a patch from the seri es file, 163
B.1.4. qdiff—print a diff of the topmost applied PatChcoooviiiiiii e 163
B.1.5. gfold—move applied patches into repository historyooveeviiiiiiiinie e 163
B.1.6. gfold—merge (“fold”) several patChes iNt0 ONEveiiiiiieiiiii e 163
B.1.7. gheader—display the header/description of @ patChcc.uvviiiiiiiiii 164
B.1.8. gimport—import a third-party patch into the QUEUEc..uiiiiiiiii i 164
B.1.9. ginit—prepare a repository to Work With MQiiiiiiiiiiiii e 164
B.1.10. qNeW—Create a NEW PAECKcouuniiiiii ettt 164
B.1.11. gnext—print the name of the NeXt PaLChoi i, 164
B.1.12. gpop—pop patches off the SEaCKoouuiiiii 164
B.1.13. gprev—print the name of the previous PatChooii i, 165
B.1.14. gpush—push patches ONnto the SEACKccouviiiiiiii e 165
B.1.15. grefresh—update the topmost applied PALChiiiiiiiiii e 165
B.1.16. grename—rename @ PACHooouui i 166

Vi

Mercuria: The Definitive Guide

B.1.17. gseries—print the entire patCh SEreScoouue i 166

B.1.18. gtop—print the name of the current PatCh ... e 166

B.1.19. qunapplied—print patches Not yet appliedooiiiiiiiiii e 166

B.1.20. hg strip—remove a revision and deSCeNTaNSuveeieuiiieeiiiiee e 166

B.2. MQ fll@ FEfOIONCE .. et aen 167
B.2. L The SEIi @S flle i et 167

B.2.2. The ST At US file .. e ettt e 167

C. Installing Mercurial frOM SOUICEiieiii ettt ettt e e et ettt e e e e e eananas 168
C.1. ON @ UNIX-TKE SYSIEIM ...ttt e e ettt e e e e e enaens 168

C.2. ON WINOOWS ...ttt ettt e et et et b e ettt e et et e et et e e e eba s 168

D. Open PUDITICEIION LICENSE ... ittt ettt ettt e ettt e et e et e e e e et e e e eebe e e e enbanaeeee 169
D.1. Reguirements on both unmodified and modified VErSIONScooiviiiiiiiiini e 169

DD e)Y o | APPSO P PP PPUPPP 169

D.3. SCOPE OF [HCBNSE ..ttt ettt e ettt e ettt e e et et e e e e et e e e eaba e eaees 169

D.4. Requirements on MOified WOPKSciiiiiiiiiii e eet e 169

D.5. Good-practice reCOMMENTEIIONScc.uuueiiitte ettt ettt e et e et e et e e e e e e e s 170

D.6. LICENSE OPLIONS ... eeettiee ettt ettt ettt ettt e et e et b e ettt et et e e 170

viii

List of Figures

2.1. Graphical history of the hel | 0 FEPOSITONYuiiiiiiiii e e e e e e eaes 11
3.1. Divergent recent histories of the ny- hel | o and my- new hel | 0 reposItories.........cocevvvviiiieii i, 23
3.2. Repository contents after pulling from my-hel l o intony-new hel 1 0 ..o 24
3.3. Working directory and repository during merge, and following cCommitccooeviiiiiiiii i, 26
3.4. Conflicting changes t0 @ QOCUMENTciuuuiiii e e e e e e e e e e e e e e e e et e e et e e et e e et e e aneeanns 26
3.5. Using kdiff3 to merge versions of @ filec..iiiiiiiii e 27
4.1. Relationships between files in working directory and filelogs in repositoryccevevviieiiiiiiiii e 31
R VI T= =T = - = = o s o1 32
4.3. Snapshot of areviog, with incremental deltasooeviiiii i 34
4.4, The conceptual StrUCLUIE OF @ TEVIOQ ... iuveiii i e e e e e e e e e e et e e e ean s 35
4.5. The working directory Can have tWO ParENtScc.uuieeuiiiiieeieee e e e e e e e e e e e et e e e e e an e e e e eeenas 36
4.6. The working directory gains new parents after @ COMMILcoevuniiiiiiiiiii e e e e e e e 36
4.7. The working directory, updated to an older ChangESELveiiiiiii i e 37
4.8. After a commit made while synced to an older Changesetcovviiiii i 38
4.9, Merging tWO NEBASccouuiiiiiiiii e e e e e e e e e e e e e r e 39
B.1. FEALUIE DIaNCNES .. .ooiti it e e ettt e e e ettt e e et et e e e e et e e e e et n e e e et e e e et e aaee 57
9.1. Backing out a change using the hg backout commandco.oiiiiiiiiii e 87
9.2. Automated backout of a non-tip change using the hg backout commandcccociiiiiii i 88
9.3. Backing out a change using the hg backout commandco.iiiiiiiii e, 89
9.4. Manually merging a backOut ChanQecciieiiiiii e e e e et e e e e eeen 90
LS T N o o 1= (o[92
9.6. Backing out the merge, favoring ONE PAIrENtcc.uiiiueeeii e et e e e e e e e e e e e e e e e e st e e e eanaeeaen 93
9.7. Backing out the merge, favoring the Other Parentcooeviiiiii e 93
9.8. Merging the DACKOULSiiii i e e e e e e e e e e et e e e e et e e et e e eanneeees 94
9.9. Merging the DACKOULSiiiiiiii e e e e e e e e e e e et e e e e et e e et e eeanaeeaen 95
12.1. Applied and unapplied patches in the MQ PatCh StaCKcc.uiiiiiiiii e 134

List of Tables

A.l. Subversion commands and Mercuria equivalents

Preface

1. Technical storytelling

A few years ago, when | wanted to explain why | believed that distributed revision control isimportant, the field was then
S0 new that there was almost no published literature to refer peopleto.

Although at that time | spent sometimeworking on the internals of Mercurial itself, | switched to writing this book because
that seemed like the most effective way to help the software to reach a wide audience, along with the idea that revision
control ought to be distributed in nature. | publish the book online under a liberal license for the same reason: to get the
word out.

There's afamiliar rhythm to a good software book that closely resembles telling a story: What is this thing? Why does it
matter? How will it help me? How do | useit? In this book, | try to answer those questions for distributed revision control
in general, and for Mercurial in particular.

2. Thank you for supporting Mercurial

By purchasing a copy of this book, you are supporting the continued development and freedom of Mercurial in particular,
and of open source and free software in general. O'Reilly Mediaand | are donating my royalties on the sales of this book
to the Software Freedom Conservancy (http://www.softwarefreedom.org/) which provides clerical and legal support to
Mercurial and a number of other prominent and worthy open source software projects.

3. Acknowledgments

This book would not exist were it not for the efforts of Matt Mackall, the author and project lead of Mercurial. Heis ably
assisted by hundreds of volunteer contributors across the world.

My children, Cian and Ruairi, aways stood ready to help me to unwind with wonderful, madcap little-boy games. I'd also
like to thank my ex-wife, Shannon, for her support.

My colleagues and friends provided help and support in innumerable ways. This list of people is necessarily very
incomplete: Stephen Hahn, Karyn Ritter, Bonnie Corwin, James Vasile, Matt Norwood, Eben Moglen, Bradley Kuhn,
Robert Walsh, Jeremy Fitzhardinge, Rachel Chalmers.

| developed this book in the open, posting drafts of chapters to the book web site as | completed them. Readers then
submitted feedback using aweb application that | developed. By thetime | finished writing the book, more than 100 people
had submitted comments, an amazing number considering that the comment system was live for only about two months
towards the end of the writing process.

I would particularly like to recognize the following people, who between them contributed over athird of the total number
of comments. | would like to thank them for their care and effort in providing so much detailed feedback.

Martin Geidler, Damien Cassou, Alexey Bakhirkin, Till Plewe, Dan Himes, Paul Sargent, Gokberk Hamurcu, Matthijsvan
der Vleuten, Michael Chermside, John Mulligan, Jordi Fita, Jon Parise.

| also want to acknowledge the help of the many people who caught errors and provided helpful suggestions throughout
the book.

Jeremy W. Sherman, Brian Mearns, Vincent Furia, Iwan Luijks, Billy Edwards, Andreas Sliwka, Pawe# So#yga, Eric
Hanchrow, Steve Nicolai, Micha# Mas#owski, Kevin Fitch, Johan Holmberg, Hal Wine, Volker Simonis, Thomas P
Jakobsen, Ted Stresen-Reuter, Stephen Rasku, Raphael Das Gupta, Ned Batchelder, Lou Keeble, Li Linxiao, Kao Cardoso
Félix, Joseph Wecker, Jon Prescot, Jon Maken, John Y eary, Jason Harris, Geoffrey Zheng, Fredrik Jonson, Ed Davies,
David Zumbrunnen, David Mercer, David Cabana, Ben Karel, Alan Franzoni, Y ousry Abdallah, Whitney Y oung, Vinay
Sajip, Tom Towle, Tim Ottinger, Thomas Schraitle, Tero Saarni, Ted Mielczarek, Svetoslav Agafonkin, Shaun Rowland,
Rocco Rutte, Polo-Francois Poli, Philip Jenvey, Petr Tesa#ék, Peter R. Annema, Paul Bonser, Olivier Scherler, Olivier

Xi

http://www.softwarefreedom.org/

Preface

Fournier, Nick Parker, Nick Fabry, Nicholas Guarracino, Mike Driscoll, Mike Coleman, Mietek Bak, Michagl Maloney,
Laszl6 Nagy, Kent Johnson, Julio Nobrega, Jord Fita, Jonathan March, Jonas Nockert, Jim Tittsler, Jeduan Cornejo
Legorreta, Jan Larres, James Murphy, Henri Wiechers, Hagen Mobius, Gabor Farkas, Fabien Engels, Evert Rol, Evan
Willms, Eduardo Felipe Castegnaro, Dennis Decker Jensen, Deniz Dogan, David Smith, Daed Lee, Christine Slotty, Charles
Merriam, Guillaume Catto, Brian Dorsey, Bob Nystrom, Benoit Boissinot, Avi Rosenschein, Andrew Watts, Andrew
Donkin, Alexey Rodriguez, Ahmed Chaudhary.

4. Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant wi dth
Used for program listings, aswell aswithin paragraphsto refer to program elements such asvariable or function names,
databases, data types, environment variables, statements, and keywords.

Constant wi dth bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values determined by context.

: Tip
Thisicon signifies atip, suggestion, or general note.

r. Caution

.-I

Thisicon indicates awarning or caution.

5. Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. Y ou do not need to contact us for permission unless you' re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O’ Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a significant amount of example code from this
book into your product’ s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: “Book Title by Some Author. Copyright 2008 O’ Reilly Media, Inc., 978-0-596-xxxx-X.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
<perm ssions@reilly. conp.

6. Safari® Books Online

Note

When you see a Safari® Books Online icon on the cover of your favorite technology book, that means the
book is available online through the O’ Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtua library that lets you easily search thousands of top tech
books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://my.safaribooksonline.com [http://my.saf aribooksonline.com/?portal=oreilly].

Xii

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly

Preface

7. How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. Y ou can access this
page at:

http://www.oreilly.com/catal og/<catal og page>
Don't forget to update the <url> attribute, too.

To comment or ask technical questions about this book, send email to:
<bookquesti ons@reilly. conp
For more information about our books, conferences, Resource Centers, and the O’ Reilly Network, see our web site at:

http://www.oreilly.com

Xiii

http://www.oreilly.com/catalog/<catalog page>
http://www.oreilly.com

Chapter 1. How did we get here?

1.1. Why revision control? Why Mercurial?

Revision control is the process of managing multiple versions of a piece of information. In its simplest form, this is
something that many people do by hand: every time you modify afile, save it under a new name that contains a number,
each one higher than the number of the preceding version.

Manually managing multipleversions of even asinglefileisan error-prone task, though, so software toolsto help automate
this process have long been available. The earliest automated revision control tools were intended to help a single user
to manage revisions of asingle file. Over the past few decades, the scope of revision control tools has expanded greatly;
they now manage multiple files, and help multiple people to work together. The best modern revision control tools have
no problem coping with thousands of people working together on projects that consist of hundreds of thousands of files.

Thearrival of distributed revision control isrelatively recent, and so far this new field has grown due to people'swillingness
to exploreill-charted territory.

| am writing a book about distributed revision control because | believe that it is an important subject that deserves afield
guide. | choseto write about Mercurial becauseit isthe easiest tool to learn theterrain with, and yet it scalesto the demands
of real, challenging environments where many other revision control tools buckle.

1.1.1. Why use revision control?

There are a number of reasons why you or your team might want to use an automated revision control tool for a project.

« It will track the history and evolution of your project, so you don't have to. For every change, you'll have alog of who
made it; why they made it; when they made it; and what the change was.

» When you're working with other people, revision control software makes it easier for you to collaborate. For example,
when people more or less simultaneously make potentially incompatible changes, the software will help you to identify
and resolve those conflicts.

« It can help you to recover from mistakes. If you make a change that later turns out to be in error, you can revert to an
earlier version of one or more files. In fact, areally good revision control tool will even help you to efficiently figure
out exactly when a problem was introduced (see Section 9.5, “Finding the source of abug” for details).

« It will help you to work simultaneously on, and manage the drift between, multiple versions of your project.

Most of these reasons are equally valid—at least in theory—whether you're working on a project by yourself, or with a
hundred other people.

A key question about the practicality of revision control at thesetwo different scales (“lone hacker” and “ hugeteam”) ishow
its benefits compare to its costs. A revision control tool that's difficult to understand or use is going to impose a high cost.

A five-hundred-person project is likely to collapse under its own weight almost immediately without a revision control
tool and process. In this case, the cost of using revision control might hardly seem worth considering, since without it,
failure is almost guaranteed.

On the other hand, a one-person “quick hack” might seem like a poor place to use arevision control tool, because surely
the cost of using one must be close to the overall cost of the project. Right?

Mercurial uniquely supportsboth of these scales of development. Y ou can learn the basicsin just afew minutes, and dueto
its low overhead, you can apply revision control to the smallest of projects with ease. Its simplicity means you won't have
alot of abstruse concepts or command sequences competing for mental space with whatever you'rereally trying to do. At
the same time, Mercurial's high performance and peer-to-peer nature let you scale painlessly to handle large projects.

No revision control tool can rescue a poorly run project, but a good choice of tools can make a huge difference to the
fluidity with which you can work on a project.

How did we get here?

1.1.2. The many names of revision control

Revision control is a diverse field, so much so that it is referred to by many names and acronyms. Here are a few of the
more common variations you'll encounter:

» Revision control (RCS)

 Software configuration management (SCM), or configuration management
* Source code management

 Source code control, or source control

* Version control (VCS)

Some people claim that these terms actually have different meanings, but in practice they overlap so much that there's no
agreed or even useful way to tease them apart.

1.2. About the examples in this book

This book takes an unusual approach to code samples. Every exampleis “live’—each one is actually the result of a shell
script that executes the Mercurial commands you see. Every time an image of the book is built from its sources, al the
example scripts are automatically run, and their current results compared against their expected results.

The advantage of this approach isthat the examples are always accurate; they describe exactly the behavior of the version
of Mercurial that's mentioned at the front of the book. If | update the version of Mercurial that I'm documenting, and the
output of some command changes, the build fails.

Thereisasmall disadvantageto thisapproach, whichisthat the dates and timesyou'll seein examplestend to be* squashed”
together in a way that they wouldn't be if the same commands were being typed by a human. Where a human can issue
no more than one command every few seconds, with any resulting timestamps correspondingly spread out, my automated
exampl e scripts run many commands in one second.

Asaninstance of this, several consecutive commitsin an example can show up as having occurred during the same second.
Y ou can seethisoccur inthe bi sect examplein Section 9.5, “Finding the source of abug”, for instance.

So when you're reading examples, don't place too much weight on the dates or times you see in the output of commands.
But do be confident that the behavior you're seeing is consistent and reproducible.

1.3. Trends in the field

There has been an unmistakable trend in the devel opment and use of revision control tools over the past four decades, as
people have become familiar with the capabilities of their tools and constrained by their limitations.

The first generation began by managing single files on individual computers. Although these tools represented a huge
advance over ad-hoc manual revision control, their locking model and reliance on asingle computer limited them to small,
tightly-knit teams.

The second generation loosened these constraints by moving to network-centered architectures, and managing entire
projects a a time. As projects grew larger, they ran into new problems. With clients needing to talk to servers very
frequently, server scaling became an issuefor large projects. An unreliable network connection could prevent remote users
from being ableto talk to the server at al. As open source projects started making read-only access available anonymously
to anyone, people without commit privileges found that they could not use the tools to interact with a project in a natural
way, as they could not record their changes.

The current generation of revision control toolsis peer-to-peer in nature. All of these systems have dropped the dependency
on a single central server, and alow people to distribute their revision control data to where it's actually needed.
Collaboration over the Internet has moved from constrained by technology to a matter of choice and consensus. Modern
tools can operate offline indefinitely and autonomously, with a network connection only needed when syncing changes
with another repository.

How did we get here?

1.4. A few of the advantages of distributed revision
control

Even though distributed revision control tools have for several years been asrobust and usable astheir previous-generation
counterparts, people using older tools have not yet necessarily woken up to their advantages. There are a number of ways
in which distributed tools shine relative to centralised ones.

For an individual developer, distributed tools are almost always much faster than centralised tools. This is for a simple
reason: a centralised tool needs to talk over the network for many common operations, because most metadatais stored in
asingle copy on the central server. A distributed tool stores all of its metadata locally. All else being equal, talking over
the network adds overhead to a centralised tool. Don't underestimate the value of a snappy, responsive tool: you're going
to spend alot of time interacting with your revision control software.

Distributed tools are indifferent to the vagaries of your server infrastructure, again because they replicate metadata to so
many locations. If you use a centralised system and your server catches fire, you'd better hope that your backup media
are reliable, and that your last backup was recent and actually worked. With a distributed tool, you have many backups
available on every contributor's computer.

The reliability of your network will affect distributed tools far less than it will centralised tools. You can't even use a
centralised tool without a network connection, except for a few highly constrained commands. With a distributed tool, if
your network connection goes down while you're working, you may not even notice. The only thing you won't be able to
do istalk to repositories on other computers, something that is relatively rare compared with local operations. If you have
afar-flung team of collaborators, this may be significant.

1.4.1. Advantages for open source projects

If you take a shine to an open source project and decide that you would like to start hacking on it, and that project uses a
distributed revision control tool, you are at once a peer with the people who consider themselves the “core” of that project.
If they publish their repositories, you can immediately copy their project history, start making changes, and record your
work, using the same tools in the same ways as insiders. By contrast, with a centralised tool, you must use the software
in a“read only” mode unless someone grants you permission to commit changes to their central server. Until then, you
won't be able to record changes, and your local modifications will be at risk of corruption any time you try to update your
client's view of the repository.

1.4.1.1. The forking non-problem

It has been suggested that distributed revision control tools pose some sort of risk to open source proj ects because they make
it easy to “fork” the development of a project. A fork happens when there are differences in opinion or attitude between
groups of developers that cause them to decide that they can't work together any longer. Each side takes a more or less
complete copy of the project's source code, and goes off in its own direction.

Sometimesthe campsin afork decideto reconciletheir differences. With acentralised revision control system, thetechnical
process of reconciliation is painful, and has to be performed largely by hand. Y ou have to decide whose revision history
is going to “win”, and graft the other team's changes into the tree somehow. This usually loses some or al of one side's
revision history.

What distributed tools do with respect to forking is they make forking the only way to develop a project. Every single
change that you make is potentially afork point. The great strength of this approach is that a distributed revision control
tool hasto be really good at mer ging forks, because forks are absolutely fundamental: they happen all the time.

If every piece of work that everybody does, all the time, is framed in terms of forking and merging, then what the open
sourceworld referstoasa“fork” becomes purely asocial issue. If anything, distributed toolslower thelikelihood of afork:

» They eliminate the social distinction that centralised tools impose: that between insiders (people with commit access)
and outsiders (people without).

» They makeit easier to reconcile after asocial fork, because all that'sinvolved from the perspective of the revision control
software is just another merge.

How did we get here?

Some people resist distributed tools because they want to retain tight control over their projects, and they believe that
centralised tools give them this control. However, if you're of this belief, and you publish your CVS or Subversion
repositories publicly, there are plenty of tools available that can pull out your entire project's history (albeit slowly) and
recreate it somewhere that you don't control. So while your control in this case isillusory, you are forgoing the ability to
fluidly collaborate with whatever people feel compelled to mirror and fork your history.

1.4.2. Advantages for commercial projects

Many commercial projects are undertaken by teams that are scattered across the globe. Contributors who are far from a
central server will see slower command execution and perhapslessreliability. Commercial revision control systems attempt
to ameliorate these problems with remote-site replication add-ons that are typically expensive to buy and cantankerous
to administer. A distributed system doesn't suffer from these problems in the first place. Better yet, you can easily set
up multiple authoritative servers, say one per site, so that there's no redundant communication between repositories over
expensive long-haul network links.

Centralised revision control systems tend to have relatively low scalahility. It's not unusual for an expensive centralised
system to fall over under the combined load of just afew dozen concurrent users. Once again, the typical response tendsto
be an expensive and clunky replication facility. Since the load on a central server—if you have one at all—is many times
lower with adistributed tool (because all of the datais replicated everywhere), a single cheap server can handle the needs
of amuch larger team, and replication to balance load becomes a simple matter of scripting.

If you have an employeein the field, troubleshooting aproblem at a customer's site, they'll benefit from distributed revision
control. Thetool will let them generate custom builds, try different fixesin isolation from each other, and search efficiently

through history for the sources of bugs and regressions in the customer's environment, all without needing to connect to
your company's network.

1.5. Why choose Mercurial?

Mercurial has a unique set of properties that make it a particularly good choice as arevision control system.
 Itiseasy tolearn and use.

* Itislightweight.

* It scalesexcellently.

* Itiseasy to customise.

If you are at al familiar with revision control systems, you should be able to get up and running with Mercuria in less
than five minutes. Even if not, it will take no more than a few minutes longer. Mercurial's command and feature sets are
generaly uniform and consistent, so you can keep track of afew general rulesinstead of ahost of exceptions.

On a small project, you can start working with Mercurial in moments. Creating new changes and branches; transferring
changes around (whether locally or over a network); and history and status operations are all fast. Mercurial attempts to
stay nimble and largely out of your way by combining low cognitive overhead with blazingly fast operations.

Theusefulness of Mercurial isnot limited to small projects: it isused by projectswith hundredsto thousands of contributors,
each containing tens of thousands of files and hundreds of megabytes of source code.

If the core functionality of Mercurial isnot enough for you, it's easy to build on. Mercurial iswell suited to scripting tasks,

and its clean internals and implementation in Python make it easy to add features in the form of extensions. There are a
number of popular and useful extensionsalready available, ranging from hel ping toidentify bugstoimproving performance.

1.6. Mercurial compared with other tools

Before you read on, please understand that this section necessarily reflects my own experiences, interests, and (dare | say
it) biases. | have used every one of the revision control tools listed below, in most cases for several years at atime.

How did we get here?

1.6.1. Subversion

Subversion is a popular revision control tool, developed to replace CVS. It has a centralised client/server architecture.

Subversion and Mercuria have similarly named commands for performing the same operations, so if you're familiar with
one, it is easy to learn to use the other. Both tools are portable to all popular operating systems.

Prior to version 1.5, Subverson had no useful support for merges. At the time of writing, its merge
tracking capability is new, and known to be complicated and buggy [http://svnbook.red-bean.com/nightly/en/
svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword].

Mercurial has a substantial performance advantage over Subversion on every revision control operation | have
benchmarked. | have measured its advantage as ranging from a factor of two to a factor of six when compared with
Subversion 1.4.3'sra_local file store, which isthe fastest access method available. In more realistic deploymentsinvolving
a network-based store, Subversion will be at a substantially larger disadvantage. Because many Subversion commands
must talk to the server and Subversion does not have useful replication facilities, server capacity and network bandwidth
become bottlenecks for modestly large projects.

Additionally, Subversion incurs substantial storage overhead to avoid network transactions for afew common operations,
such as finding modified files (st at us) and displaying modifications against the current revision (di f f). As aresult,
a Subversion working copy is often the same size as, or larger than, a Mercuria repository and working directory, even
though the Mercurial repository contains a complete history of the project.

Subversion is widely supported by third party tools. Mercurial currently lags considerably inthisarea. Thisgap isclosing,
however, and indeed some of Mercurial's GUI tools now outshine their Subversion equivalents. Like Mercurial, Subversion
has an excellent user manual.

Because Subversion doesn't store revision history on the client, it iswell suited to managing projects that deal with lots of
large, opague binary files. If you check in fifty revisions to an incompressible 10MB file, Subversion's client-side space
usage stays constant The space used by any distributed SCM will grow rapidly in proportion to the number of revisions,
because the differences between each revision are large.

In addition, it's often difficult or, more usually, impossible to merge different versions of abinary file. Subversion's ability
to let a user lock afile, so that they temporarily have the exclusive right to commit changes to it, can be a significant
advantage to a project where binary files are widely used.

Mercurial can import revision history from a Subversion repository. It can also export revision history to a Subversion
repository. Thismakesit easy to “test the waters’ and use Mercurial and Subversion in parallel before deciding to switch.
History conversion isincremental, so you can perform an initial conversion, then small additional conversions afterwards
to bring in new changes.

1.6.2. Git

Git isadistributed revision control tool that was devel oped for managing the Linux kernel source tree. Like Mercurial, its
early design was somewhat influenced by Monotone.

Git has avery large command set, with version 1.5.0 providing 139 individual commands. It has something of a reputation
for being difficult to learn. Compared to Git, Mercurial has a strong focus on simplicity.

Intermsof performance, Gitisextremely fast. In several cases, it isfaster than Mercurial, at least on Linux, while Mercurial
performs better on other operations. However, on Windows, the performance and general level of support that Git provides
is, at the time of writing, far behind that of Mercurial.

While a Mercurial repository needs no maintenance, a Git repository requires frequent manua “repacks’ of its metadata.
Without these, performance degrades, while space usage grows rapidly. A server that contains many Git repositories that
are not rigorously and frequently repacked will become heavily disk-bound during backups, and there have been instances
of daily backups taking far longer than 24 hours as a result. A freshly packed Git repository is slightly smaller than a
Mercurial repository, but an unpacked repository is several orders of magnitude larger.

http://svnbook.red-bean.com/nightly/en/svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword
http://svnbook.red-bean.com/nightly/en/svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword
http://svnbook.red-bean.com/nightly/en/svn.branchmerge.advanced.html#svn.branchmerge.advanced.finalword

How did we get here?

The core of Git is written in C. Many Git commands are implemented as shell or Perl scripts, and the quality of these
scripts varies widely. | have encountered severa instances where scripts charged along blindly in the presence of errors
that should have been fatal.

Mercurial can import revision history from a Git repository.

1.6.3. CVS

CVSis probably the most widely used revision control tool in the world. Dueto its age and internal untidiness, it has been
only lightly maintained for many years.

It has a centralised client/server architecture. It does not group related file changes into atomic commits, making it easy
for people to “break the build”: one person can successfully commit part of a change and then be blocked by the need for
amerge, causing other people to see only a portion of the work they intended to do. This aso affects how you work with
project history. If you want to seeall of the modifications someone made as part of atask, you will need to manually inspect
the descriptions and timestamps of the changes made to each file involved (if you even know what those files were).

CV'S has a muddled notion of tags and branches that | will not attempt to even describe. It does not support renaming of
files or directories well, making it easy to corrupt arepository. It has almost no internal consistency checking capabilities,
soitisusually not even possibleto tell whether or how arepository is corrupt. | would not recommend CV Sfor any project,
existing or new.

Mercurial can import CV'S revision history. However, there are a few caveats that apply; these are true of every other
revision control tool's CVS importer, too. Due to CV Ss lack of atomic changes and unversioned filesystem hierarchy, it
is not possible to reconstruct CV'S history completely accurately; some guesswork is involved, and renames will usually
not show up. Because alot of advanced CV'S administration has to be done by hand and is hence error-prone, it's common
for CV S importers to run into multiple problems with corrupted repositories (completely bogus revision timestamps and
files that have remained locked for over a decade are just two of the less interesting problems | can recall from personal
experience).

Mercurial can import revision history from a CV S repository.

1.6.4. Commercial tools

Perforce has a centralised client/server architecture, with no client-side caching of any data. Unlike modern revision control
tools, Perforce requires that a user run acommand to inform the server about every file they intend to edit.

The performance of Perforceis quite good for small teams, but it falls off rapidly asthe number of usersgrowsbeyond afew
dozen. Modestly large Perforce installations require the deployment of proxies to cope with the load their users generate.

1.6.5. Choosing a revision control tool

With the exception of CV'S, al of the tools listed above have unique strengths that suit them to particular styles of work.
Thereisno single revision control tool that is best in all situations.

As an example, Subversion is a good choice for working with frequently edited binary files, due to its centralised nature
and support for file locking.

| personally find Mercurial's properties of simplicity, performance, and good merge support to be acompelling combination
that has served me well for several years.

1.7. Switching from another tool to Mercurial

Mercurial is bundled with an extension named conver t , which can incrementally import revision history from several
other revision control tools. By “incrementa”, | mean that you can convert al of aproject's history to date in one go, then
rerun the conversion later to obtain new changes that happened after the initial conversion.

Therevision control tools supported by convert areasfollows:

How did we get here?

* Subversion
* CVS

» Git

» Darcs

In addition, convert can export changes from Mercuria to Subversion. This makes it possible to try Subversion and
Mercurial in parallel before committing to a switchover, without risking the loss of any work.

The convert command is easy to use. Simply point it at the path or URL of the source repository, optionaly give it the
name of the destination repository, and it will start working. After theinitial conversion, just run the same command again
to import new changes.

1.8. A short history of revision control

The best known of the old-time revision control toolsis SCCS (Source Code Contral System), which Marc Rochkind wrote
at Bell Labs, inthe early 1970s. SCCS operated on individual files, and required every person working on aproject to have
access to a shared workspace on a single system. Only one person could modify afile at any time; arbitration for access to
files was vialocks. It was common for people to lock files, and later forget to unlock them, preventing anyone else from
modifying those files without the help of an administrator.

Walter Tichy developed a free aternative to SCCS in the early 1980s; he called his program RCS (Revision Control
System). Like SCCS, RCS required devel opers to work in a single shared workspace, and to lock filesto prevent multiple
people from modifying them simultaneously.

Later inthe 1980s, Dick Gruneused RCSasabuilding block for aset of shell scriptsheinitially called cmt, but then renamed
to CVS (Concurrent Versions System). The big innovation of CVS was that it let developers work simultaneously and
somewhat independently in their own personal workspaces. The personal workspaces prevented devel opers from stepping
on each other'stoes all the time, as was common with SCCS and RCS. Each devel oper had acopy of every project file, and
could modify their copiesindependently. They had to mergetheir edits prior to committing changesto the central repository.

Brian Berliner took Grune's original scripts and rewrote them in C, releasing in 1989 the code that has since devel oped
into the modern version of CVS. CV'S subsequently acquired the ability to operate over a network connection, giving it a
client/server architecture. CVS's architecture is centralised; only the server has a copy of the history of the project. Client
workspaces just contain copies of recent versions of the project's files, and a little metadata to tell them where the server
is. CV'S has been enormously successful; it is probably the world's most widely used revision control system.

In the early 1990s, Sun Microsystems developed an early distributed revision control system, called TeamWare. A
TeamWare workspace contains a complete copy of the project's history. TeamWare has no notion of a central repository.
(CVSrelied upon RCSfor its history storage; TeamWare used SCCS.)

Asthe 1990s progressed, awareness grew of a number of problemswith CV'S. It records simultaneous changes to multiple
files individually, instead of grouping them together as a single logically atomic operation. It does not manage its file
hierarchy well; it is easy to make amess of arepository by renaming files and directories. Worse, its source code is difficult
to read and maintain, which made the “pain level” of fixing these architectural problems prohibitive.

In 2001, Jim Blandy and Karl Fogel, two developers who had worked on CV S, started a project to replace it with atool that
would have a better architecture and cleaner code. The result, Subversion, does not stray from CVS's centralised client/
server model, but it adds multi-file atomic commits, better namespace management, and a number of other features that
make it a generally better tool than CVS. Sinceitsinitial release, it has rapidly grown in popularity.

More or less smultaneously, Graydon Hoare began working on an ambitious distributed revision control system that he
named Monotone. While Monotone addresses many of CVS's design flaws and has a peer-to-peer architecture, it goes
beyond earlier (and subsequent) revision control tools in a number of innovative ways. It uses cryptographic hashes as
identifiers, and has an integral notion of “trust” for code from different sources.

Mercurial began life in 2005. While afew aspects of its design are influenced by Monotone, Mercurial focuses on ease of
use, high performance, and scalability to very large projects.

Chapter 2. A tour of Mercurial: the basics

2.1. Installing Mercurial on your system

Prebuilt binary packages of Mercurial are available for every popular operating system. These make it easy to start using
Mercurial on your computer immediately.

2.1.1. Windows

The best version of Mercurial for Windows is TortoiseHg, which can be found at http://tortoisehg.org. This package has
no external dependencies; it “just works’. It provides both command line and graphical user interfaces.

2.1.2. Mac OS X

L ee Cantey publishes an installer of Mercurial for Mac OS X at http://mercurial.berkwood.com.

2.1.3. Linux

Because each Linux distribution has its own packaging tools, policies, and rate of development, it's difficult to give a
comprehensive set of instructions on how to install Mercurial binaries. The version of Mercuria that you will end up with
can vary depending on how active the person is who maintains the package for your distribution.

To keep things simple, | will focus on installing Mercuria from the command line under the most popular Linux
distributions. Most of these distributions provide graphical package managers that will let you install Mercurial with a
single click; the package name to look for isner curi al .

» Ubuntu and Debian:

|apt-get install mercurial

* Fedora

lyuminstall mercurial

¢ OpenSUSE:

|zypper install mercurial

e Gentoo:

lemer ge mercuri al

2.1.4. Solaris

SunFreeWare, at http://www.sunfreeware.com, provides prebuilt packages of Mercurial.

2.2. Getting started

To begin, well use the hg version command to find out whether Mercuria is installed properly. The actual version
information that it printsisn't so important; we simply care whether the command runs and prints anything at all.

$ hg version
Mercurial Distributed SCM (version 1.7)
(see http://nmercurial.selenic.comfor nore infornation)

Copyright (C) 2005-2010 Matt Mackall and others
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE.

http://tortoisehg.org
http://mercurial.berkwood.com
http://www.sunfreeware.com

A tour of Mercurial: the basics

2.2.1. Built-in help

Mercurial provides a built-in help system. This is invaluable for those times when you find yourself stuck trying to
remember how to run a command. If you are completely stuck, simply run hg help; it will print a brief list of commands,
along with a description of what each does. If you ask for help on a specific command (as below), it prints more detailed
information.

$ hg help init
hg init [-e CMD] [--renotecnd CVD] [DEST]

create a new repository in the given directory

Initialize a new repository in the given directory. If the given directory
does not exist, it will be created

If no directory is given, the current directory is used

It is possible to specify an "ssh://" URL as the destination. See "hg help
urls" for nore information

Returns 0 on success
opt i ons

-e --ssh CVD speci fy ssh command to use
--renptecnd CMD specify hg conmand to run on the renote side

use "hg -v help init" to show gl obal options

For a more impressive level of detail (which you won't usually need) run hg help - v. The - v option is short for - -
ver bose, and tells Mercurial to print more information than it usually would.

2.3. Working with a repository

In Mercurial, everything happensinside arepository. The repository for a project contains all of the files that “ belong to”
that project, along with a historical record of the project'sfiles.

There's nothing particularly magical about arepository; it issimply adirectory tree in your filesystem that Mercurial treats
as special. You can rename or delete arepository any time you like, using either the command line or your file browser.

2.3.1. Making a local copy of a repository

Copying arepository isjust alittle bit special. While you could use a normal file copying command to make a copy of a
repository, it's best to use a built-in command that Mercurial provides. Thiscommand is called hg clone, because it makes
anidentical copy of an existing repository.

$ hg clone http://hg.serpentine.comtutorial/hello

destination directory: hello

requesting all changes

addi ng changesets

addi ng mani fests

adding file changes

added 5 changesets with 5 changes to 2 files

updating to branch default

2 files updated, O files nmerged, O files renoved, O files unresolved

One advantage of using hg clone is that, as we can see above, it lets us clone repositories over the network. Another is
that it remembers where we cloned from, which we'll find useful soon when we want to fetch new changes from another
repository.

If our clone succeeded, we should now have alocal directory called hel | 0. Thisdirectory will contain some files.

S Is -1
total 4
drwxr-xr-x 3 steve steve 4096 Nov 1 23:58 hello

A tour of Mercurial: the basics

$ Is hello
Vakefile hello.c

These files have the same contents and history in our repository asthey do in the repository we cloned.

Every Mercurial repository iscomplete, self-contained, and independent. It containsits own private copy of aproject'sfiles
and history. As we just mentioned, a cloned repository remembers the location of the repository it was cloned from, but
Mercurial will not communicate with that repository, or any other, unless you tell it to.

What this means for now is that we're free to experiment with our repository, safe in the knowledge that it's a private
“sandbox” that won't affect anyone else.

2.3.2. What's in arepository?

When we take a more detailed look inside a repository, we can see that it contains a directory named . hg. Thisis where
Mercurial keeps all of its metadata for the repository.

$ cd hello
$ls -a
.hg Makefile hello.c

The contents of the . hg directory and its subdirectories are private to Mercurial. Every other file and directory in the
repository isyoursto do with as you please.

To introduce alittle terminology, the . hg directory isthe “real” repository, and al of the files and directories that coexist
with it are said to live in the working directory. An easy way to remember the distinction is that the repository contains
the history of your project, whilethewor king dir ectory containsasnapshot of your project at aparticular point in history.

2.4. A tour through history

One of thefirst thingswe might want to do with anew, unfamiliar repository isunderstand its history. The hg log command
gives us aview of the history of changesin the repository.

$ hg I og

changeset : 4:2278160e78d4

t ag: tip

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Sat Aug 16 22:16:53 2008 +0200
sunmmary: Trim coments

changeset : 3: 0272e0d5a517

user: Bryan O Sul l'i van <bos@er penti ne. con>

dat e: Sat Aug 16 22:08:02 2008 +0200

summary: Get nake to generate the final binary froma .o file.
changeset : 2: fef 857204a0c

user: Bryan O Sul l'i van <bos@er penti ne. con>

dat e: Sat Aug 16 22:05:04 2008 +0200

sunmmary: Introduce a typo into hello.c

changeset : 1: 82e55d328c8c

user : nmpm@el eni c. com
dat e: Fri Aug 26 01:21:28 2005 -0700
summary: Create a nakefile

changeset : 0: 0a04b987be5a

user : nmpm@el eni c. com
dat e: Fri Aug 26 01:20:50 2005 -0700
summary: Create a standard "hello, world" program

By default, this command prints a brief paragraph of output for each change to the project that was recorded. In Mercurial
terminology, we call each of these recorded events a changeset, because it can contain arecord of changesto severa files.

Thefieldsin arecord of output from hg log are as follows.

10

A tour of Mercurial: the basics

» changeset : Thisfield has the format of a number, followed by a colon, followed by a hexadecimal (or hex) string.
These areidentifier sfor the changeset. The hex string isaunique identifier: the same hex string will always refer to the
same changeset in every copy of this repository. The number is shorter and easier to type than the hex string, but it isn't
unique: the same number in two different clones of arepository may identify different changesets.

» user : Theidentity of the person who created the changeset. Thisisafree-form field, but it most often contains aperson's
name and email address.

» dat e: The date and time on which the changeset was created, and the timezone in which it was created. (The date and
time are local to that timezone; they display what time and date it was for the person who created the changeset.)

« summar y: Thefirst line of the text message that the creator of the changeset entered to describe the changeset.

» Some changesets, such as the first in the list above, have at ag field. A tag is another way to identify a changeset, by
giving it an easy-to-remember name. (Thetag namedt i p isspecial: it alwaysreferstothe newest changeinarepository.)

The default output printed by hg log is purely a summary; it is missing alot of detail.

Figure 2.1, “Graphical history of the hel | o repository” provides a graphical representation of the history of the hel | o
repository, to make it alittle easier to see which direction history is“flowing” in. We'll be returning to this figure several
timesin this chapter and the chapter that follows.

Figure 2.1. Graphical history of thehel | o repository

4: 2278 (newest)
4: 2278
3: 0272 f R
revision changeset
2: fef8 number identifier
1: 82e5

0: 0a04 (oldest)

2.4.1. Changesets, revisions, and talking to other people

As English is a notoriously sloppy language, and computer science has a hallowed history of terminological confusion
(why use one term when four will do?), revision control has a variety of words and phrases that mean the same thing. If
you are talking about Mercurial history with other people, you will find that the word “ changeset” is often compressed to
“change” or (when written) “cset”, and sometimes a changeset isreferred to asa“revision” or a“rev”.

While it doesn't matter what word you use to refer to the concept of “a changeset”, the identifier that you use to refer
to “a specific changeset” is of great importance. Recall that the changeset field in the output from hg log identifies a
changeset using both a number and a hexadecimal string.

» Therevision number isahandy notation that isonly valid in that repository.

» Thehexadecimal string isthe permanent, unchanging identifier that will alwaysidentify that exact changeset in every
copy of the repository.

Thisdistinction isimportant. If you send someone an email talking about “revision 33", there's ahigh likelihood that their
revision 33 will not be the same as yours. The reason for this is that a revision number depends on the order in which
changes arrived in arepository, and there is no guarantee that the same changes will happen in the same order in different
repositories. Three changes a, b, ¢ can easily appear in onerepository as0, 1, 2, whilein another as0, 2, 1.

11

A tour of Mercurial: the basics

Mercurial uses revision humbers purely as a convenient shorthand. If you need to discuss a changeset with someone, or
make arecord of achangeset for some other reason (for example, in abug report), use the hexadecimal identifier.

2.4.2. Viewing specific revisions

To narrow the output of hg log down to a single revision, usethe - r (or - - r ev) option. You can use either a revision
number or a hexadecimal identifier, and you can provide as many revisions as you want.

$ hg log -r 3
changeset : 3: 0272e0d5a517

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Sat Aug 16 22:08:02 2008 +0200
summary: Get nake to generate the final binary froma .o file.

$ hg log -r 0272e0d5a517
changeset : 3: 0272e0d5a517

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Sat Aug 16 22:08:02 2008 +0200
summary: Get nake to generate the final binary froma .o file.

$ hglog -r 1 -r 4
changeset : 1: 82e55d328c8c

user : nmpm@el eni c. com
dat e: Fri Aug 26 01:21:28 2005 -0700
summary: Create a nakefile

changeset : 4:2278160e78d4

t ag: tip

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Sat Aug 16 22:16:53 2008 +0200
sunmmary: Trim coments

If you want to see the history of severa revisions without having to list each one, you can use range notation; this lets
you expresstheidea“| want all revisions between abc and def , inclusive’.

$ hg log -r 2:4

changeset : 2: fef 857204a0c

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Sat Aug 16 22:05: 04 2008 +0200
summary: Introduce a typo into hello.c

changeset : 3: 0272e0d5a517

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Sat Aug 16 22:08: 02 2008 +0200
summary: Get nake to generate the final binary froma .o file.

changeset : 4:2278160e78d4

t ag: tip

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Sat Aug 16 22:16:53 2008 +0200
sunmmary: Trim coments

Mercurial aso honours the order in which you specify revisions, so hg log -r 2:4 prints 2, 3, and 4. while hg log -r 4:2
prints 4, 3, and 2.

2.4.3. More detailed information

While the summary information printed by hg log is useful if you already know what you're looking for, you may need to
see a complete description of the change, or alist of the files changed, if you're trying to decide whether a changeset is the
one you're looking for. The hg log command's- v (or - - ver bose) option gives you this extra detail.

$ hg log -v -r 3
changeset : 3: 0272e0d5a517

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Sat Aug 16 22:08: 02 2008 +0200
files: Makefil e

12

A tour of Mercurial: the basics

descri ption:
Get make to generate the final binary froma .o file.

If you want to see both the description and content of achange, add the- p (or - - pat ch) option. Thisdisplaysthe content
of a change as a unified diff (if you've never seen a unified diff before, see Section 12.4, “Understanding patches’ for
an overview).

$ hg log -v -p -r 2
changeset : 2: fef 857204a0c

user : Bryan O Sul |l i van <bos@er penti ne. con>
dat e: Sat Aug 16 22:05: 04 2008 +0200
files: hello.c

descri ption:
I ntroduce a typo into hello.c.

di ff -r 82e55d328c8c -r fef857204a0c hello.c

- alhello.c Fri Aug 26 01:21:28 2005 -0700
+++ b/ hello.c Sat Aug 16 22:05: 04 2008 +0200
a»-11,6 +11,6 @@

int main(int argc, char **argv)
{

- printf("hello, world!\n");

+ printf("hello, world/\");
return O;

}

The - p option is tremendously useful, so it's well worth remembering.

2.5. All about command options

Let's take a brief break from exploring Mercurial commands to discuss a pattern in the way that they work; you may find
this useful to keep in mind as we continue our tour.

Mercurial has a consistent and straightforward approach to dealing with the options that you can pass to commands. It
follows the conventions for options that are common to modern Linux and Unix systems.

» Every option has along name. For example, as we've already seen, the hg log command acceptsa- - r ev option.

» Most options have short names, too. Instead of - - r ev, we can use - r . (The reason that some options don't have short
names is that the optionsin question are rarely used.)

» Long options start with two dashes (e.g. - - r ev), while short options start with one (e.g. - r).

» Option naming and usage is consistent across commands. For example, every command that lets you specify a changeset
ID or revision number acceptsboth - r and - - r ev arguments.

« If you are using short options, you can save typing by running them together. For example, the command hg log -v -
p -r 2 can be written as hg log -vpr 2.

In the examples throughout this book, | usually use short options instead of long. This simply reflects my own preference,
so don't read anything significant into it.

Most commands that print output of some kind will print more output when passed a - v (or - - ver bose) option, and
lesswhen passed - q (or - - qui et).

Option naming consistency
Almost always, Mercurial commands use consi stent option names to refer to the same concepts. For instance,

if acommand deals with changesets, you'll always identify them with - - r ev or - r . This consistent use of
option names makes it easier to remember what options a particular command takes.

13

A tour of Mercurial: the basics

2.6. Making and reviewing changes

Now that we have a grasp of viewing history in Mercurial, let's take alook at making some changes and examining them.

The first thing we'll do isisolate our experiment in a repository of its own. We use the hg clone command, but we don't
need to clone a copy of the remote repository. Since we aready have a copy of it locally, we can just clone that instead.
Thisis much faster than cloning over the network, and cloning alocal repository uses less disk spacein most cases, too’.

$ cd ..

$ hg clone hello ny-hello

updating to branch default

2 files updated, O files nerged, O files renoved, O files unresol ved
$ cd ny-hello

As an aside, it's often good practice to keep a “pristing” copy of a remote repository around, which you can then make
temporary clones of to create sandboxes for each task you want to work on. Thisletsyou work on multipletasksin parallel,
each isolated from the others until it's complete and you're ready to integrate it back. Because local clones are so cheap,
there's almost no overhead to cloning and destroying repositories whenever you want.

Inour my- hel | o repository, we have afile hel | 0. ¢ that contains the classic “hello, world” program.

$ cat hello.c

*

* Placed in the public domain by Bryan O Sullivan. This programis
* not covered by patents in the United States or other countries.
*/

#i ncl ude <stdio. h>
int main(int argc, char **argv)
printf("hello, world!\");

return O;

}

Let's edit thisfile so that it prints a second line of output.

... edit edit edit

$ cat hello.c

*

* Placed in the public domain by Bryan O Sullivan. This programis
* not covered by patents in the United States or other countries.
*/

#i ncl ude <stdi o. h>

int main(int argc, char **argv)
{
printf("hello, world!\");
printf("hello again!\n");
return O;

}

Mercurial's hg status command will tell uswhat Mercurial knows about the files in the repository.

$Is

Vakefile hello.c
$ hg status

M hel | 0. c

The hg status command prints no output for some files, but a line starting with “M' for hel | 0. c. Unless you tell it to,
hg status will not print any output for files that have not been modified.

The saving of space arises when source and destination repositories are on the same filesystem, in which case Mercuria will use hardlinks to do copy-on-
write sharing of itsinternal metadata. If that explanation meant nothing to you, don't worry: everything happens transparently and automatically, and you don't
need to understand it.

14

A tour of Mercurial: the basics

The “M' indicates that Mercurial has noticed that we modified hel | 0. c. We didn't need to inform Mercurial that we
were going to modify the file before we started, or that we had modified the file after we were done; it was able to figure
this out itself.

It's somewhat helpful to know that we've modified hel | o. c, but we might prefer to know exactly what changes we've
made to it. To do this, we use the hg diff command.

$ hg diff
di ff -r 2278160e78d4 hello.c
- a/hello.c Sat Aug 16 22:16:53 2008 +0200
+++ b/ hello.c Mon Nov 01 23:58:46 2010 +0000
a@-8,5 +8,6 @@
int main(int argc, char **argv)
{
printf("hello, world!\");
+ printf("hello again!\n");
return O;

}

: Under standing patches

Remember to take a look at Section 12.4, “Understanding patches’ if you don't know how to read output
above.

2.7. Recording changes in a new changeset

We can modify files, build and test our changes, and use hg status and hg diff to review our changes, until we're satisfied
with what we've done and arrive at a natural stopping point where we want to record our work in a new changeset.

The hg commit command lets us create anew changeset; we'll usualy refer to thisas* making acommit” or “committing”.

2.7.1. Setting up a username

When you try to run hg commit for thefirst time, it is not guaranteed to succeed. Mercurial records your name and address
with each change that you commit, so that you and others will later be able to tell who made each change. Mercurial tries
to automatically figure out a sensible username to commit the change with. It will attempt each of the following methods,
in order:

1. If you specify a- u option to the hg commit command on the command line, followed by a username, thisis aways
given the highest precedence.

2. If you have set the HGUSER environment variable, thisis checked next.

3. If you create afilein your home directory called . hgr c, with auser nane entry, that will be used next. To see what
the contents of this file should look like, refer to Section 2.7.1.1, “Creating a Mercurial configuration file’ below.

4. If you have set the EMAI L environment variable, thiswill be used next.

5. Mercurial will query your system to find out your local user name and host name, and construct a username from these
components. Since this often resultsin a username that is not very useful, it will print awarning if it has to do this.

If al of these mechanismsfail, Mercurial will fail, printing an error message. In this case, it will not let you commit until
you Sset up a username.

Y ou should think of the HGUSER environment variable and the - u option to the hg commit command aswaysto override
Mercurial's default selection of username. For normal use, the simplest and most robust way to set a username for yourself
isby creating a. hgr c file; see below for details.

2.7.1.1. Creating a Mercurial configuration file

To set auser name, use your favorite editor to create afile called . hgr ¢ in your home directory. Mercurial will use this
file to look up your personalised configuration settings. The initial contents of your . hgr ¢ should look like this.

15

A tour of Mercurial: the basics

“Homedirectory” on Windows

When we refer to your home directory, on an English language installation of Windows thiswill usually be a
folder named after your user namein C: \ Docunent s and Setti ngs. You can find out the exact name
of your home directory by opening a command prompt window and running the following command.

[C:\> echo %Jser Profile% |

This is a Mercurial configuration file.
[ui]

username = Firstname Lastnanme <email.address@xanpl e. net >

The“[ui] ” line begins a section of the config file, so you can read the “user nanme = .. .” line as meaning “set the
value of the user nane item in the ui section”. A section continues until a new section begins, or the end of the file.
Mercurial ignores empty lines and treats any text from “#” to the end of aline as a comment.

2.7.1.2. Choosing a user name

You can use any text you like as the value of the user nane config item, since this information is for reading by other
people, but will not be interpreted by Mercurial. The convention that most people follow is to use their name and email
address, asin the example above.

Note

Mercurial's built-in web server obfuscates email addresses, to make it more difficult for the email harvesting
toolsthat spammers use. Thisreducesthe likelihood that you'll start receiving morejunk email if you publish
aMercuria repository on the web.

2.7.2. Writing a commit message

When we commit a change, Mercuria drops us into atext editor, to enter a message that will describe the modifications
we've made in this changeset. Thisis called the commit message. It will be arecord for readers of what we did and why,
and it will be printed by hg log after we've finished committing.

s hg commit

The editor that the hg commit command drops us into will contain an empty line or two, followed by a number of lines
starting with “HG .

This is where | type ny conmmt comment
Enter conmit nessage. Lines beginning with 'HG' are renpved
user: Bryan O Sullivan <bos@er pentine. con>

branch 'defaul t'
changed hello.c

SHDo D

Mercuria ignoresthelinesthat start with“HG: ”; it usesthem only to tell uswhich filesit'srecording changesto. Modifying
or deleting these lines has no effect.

2.7.3. Writing a good commit message

Since hg log only prints the first line of a commit message by default, it's best to write a commit message whose first line
stands alone. Here's areal example of a commit message that doesn't follow this guideline, and hence has a summary
that is not readable.

changeset : 73: 584af 0e231be

user: Censored Person <censored. per son@xanpl e. or g>
dat e: Tue Sep 26 21:37:07 2006 -0700
sunmmary: i ncl ude buil dnei ster/commondefs. Add exports

16

A tour of Mercurial: the basics

Asfar as the remainder of the contents of the commit message are concerned, there are no hard-and-fast rules. Mercurial
itself doesn't interpret or care about the contents of the commit message, though your project may have policiesthat dictate
acertain kind of formatting.

My personal preference isfor short, but informative, commit messages that tell me something that | can't figure out with
aquick glance at the output of hg log --patch.

If we run the hg commit command without any arguments, it records all of the changes we've made, as reported by hg
status and hg diff.

A surprisefor Subversion users

Likeother Mercurial commands, if we don't supply explicit namesto commit to the hg commit, it will operate
across arepository's entire working directory. Be wary of thisif you're coming from the Subversion or CVS
world, since you might expect it to operate only on the current directory that you happen to be visiting and
its subdirectories.

2.7.4. Aborting a commit

If you decide that you don't want to commit whilein the middle of editing acommit message, simply exit from your editor
without saving the file that it's editing. Thiswill cause nothing to happen to either the repository or the working directory.

2.7.5. Admiring our new handiwork

Once we've finished the commit, we can use the hg tip command to display the changeset we just created. This command
produces output that isidentical to hg log, but it only displays the newest revision in the repository.

$ hg tip -vp

changeset : 5: e8a57ef ee3b2

tag: tip

user : Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:58:46 2010 +0000

files: hello.c

descri ption
IAdded an extra |ine of output

di ff -r 2278160e78d4 -r e8a57efee3b2 hello.c
- alhello.c Sat Aug 16 22:16:53 2008 +0200
+++ b/ hello.c Mon Nov 01 23:58:46 2010 +0000
@@-8,5 +8,6 @@
int main(int argc, char **argv)
{
printf("hello, worldl\")
+ printf("hello again!\n")
return 0

}

We refer to the newest revision in the repository asthetip revision, or simply the tip.

By the way, the hg tip command accepts many of the same options as hg log, so - v above indicates “be verbose”, - p
specifies “print apatch”. The use of - p to print patches is another example of the consistent naming we mentioned earlier.

2.8. Sharing changes

We mentioned earlier that repositoriesin Mercurial are self-contained. This meansthat the changeset we just created exists
only inour ny- hel | o repository. Let'slook at afew ways that we can propagate this change into other repositories.

2.8.1. Pulling changes from another repository

To get started, let's clone our original hel | o repository, which does not contain the change we just committed. We'll call
our temporary repository hel | o- pul | .

17

A tour of Mercurial: the basics

$ cd .

$ hg clone hello hello-pul

updating to branch default

2 files updated, O files nerged, O files renoved, O files unresol ved

Well usethe hg pull command to bring changesfromny- hel | o intohel | o- pul | . However, blindly pulling unknown
changes into a repository is a somewhat scary prospect. Mercurial provides the hg incoming command to tell us what
changes the hg pull command would pull into the repository, without actually pulling the changesin.

$ cd hel | o-pul

$ hg incoming ../ny-hello
conparing with ../ny-hello
sear chi ng for changes

changeset : 5: e8a57ef ee3b2

t ag: tip

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:58:46 2010 +0000
summary: Added an extra line of output

Bringing changes into a repository is a simple matter of running the hg pull command, and optionally telling it which
repository to pull from.

$ hg tip

changeset : 4:2278160e78d4

t ag: tip

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Sat Aug 16 22:16:53 2008 +0200
sunmmary: Trim coment s

$ hg pull ../ny-hello

pulling from../ny-hello

searchi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files
(run 'hg update' to get a working copy)

$ hg tip

changeset : 5: e8a57ef ee3b2

t ag: tip

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:58:46 2010 +0000
summary: Added an extra |ine of output

As you can see from the before-and-after output of hg tip, we have successfully pulled changes into our repository.
However, Mercuria separates pulling changes in from updating the working directory. There remains one step before we
will see the changes that we just pulled appear in the working directory.

Pulling specific changes

It is possible that due to the delay between running hg incoming and hg pull, you may not see all changesets
that will be brought from the other repository. Suppose you're pulling changes from a repository on the
network somewhere. While you are looking at the hg incoming output, and before you pull those changes,
someone might have committed something in the remote repository. This meansthat it's possible to pull more
changes than you saw when using hg incoming.

If you only want to pull precisely the changesthat were listed by hg incoming, or you have some other reason

to pull a subset of changes, simply identify the change that you want to pull by its changeset ID, e.g. hg
pull -r7e95bb.

2.8.2. Updating the working directory

We have so far glossed over the relationship between a repository and its working directory. The hg pull command that
we ran in Section 2.8.1, “Pulling changes from another repository” brought changes into the repository, but if we check,

18

A tour of Mercurial: the basics

there's no sign of those changes in the working directory. Thisis because hg pull does not (by default) touch the working
directory. Instead, we use the hg update command to do this.

$ grep printf hello.c
printf("hello, world!\")
$ hg update tip
1 files updated, O files nerged, O files renoved, O files unresol ved
$ grep printf hello.c
printf("hello, world!\")
printf("hello again!\n")

It might seem a bit strange that hg pull doesn't update the working directory automatically. There's actually a good reason
for this: you can use hg update to update the working directory to the state it wasin at any revision in the history of the
repository. If you had the working directory updated to an old revision—to hunt down the origin of abug, say—and ran a
hg pull which automatically updated the working directory to a new revision, you might not be terribly happy.

Since pull-then-update is such a common sequence of operations, Mercurial lets you combine the two by passing the -
u option to hg pull.

If you look back at the output of hg pull in Section 2.8.1, “ Pulling changes from another repository” when weran it without
- U, you can see that it printed a helpful reminder that we'd have to take an explicit step to update the working directory.

To find out what revision the working directory is at, use the hg parents command.

$ hg parents

changeset : 5: e8ab57ef ee3b2

tag: tip

user: Bryan O Sul li van <bos@er penti ne. con>
dat e: Mon Nov 01 23:58:46 2010 +0000
summary: Added an extra line of output

If you look back at Figure 2.1, “Graphical history of thehel | o repository”, you'll see arrows connecting each changeset.
The node that the arrow leads from in each case is a parent, and the node that the arrow leads to isits child. The working
directory has a parent in just the same way; thisis the changeset that the working directory currently contains.

To update theworking directory to aparticular revision, givearevision number or changeset 1D to thehg update command.

$ hg update 2
2 files updated, O files nerged, O files renoved, O files unresol ved
$ hg parents

changeset : 2: fef 857204a0c

user: Bryan O Sul | i van <bos@er penti ne. con
dat e: Sat Aug 16 22:05:04 2008 +0200
sunmary: Introduce a typo into hello.c

$ hg update

2 files updated, O files nerged, O files renoved, O files unresol ved
$ hg parents

changeset : 5: e8a57ef ee3b2

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con»
dat e: Mon Nov 01 23:58:46 2010 +0000
sunmary: Added an extra |ine of output

If you omit an explicit revision, hg update will update to the tip revision, as shown by the second call to hg update in
the example above.

2.8.3. Pushing changes to another repository

Mercurial lets us push changes to another repository, from the repository we're currently visiting. As with the example of
hg pull above, we'll create atemporary repository to push our changes into.

$ cd .
$ hg clone hello hello-push
updating to branch default

19

A tour of Mercurial: the basics

2 files updated, O files nerged, O files renoved, O files unresol ved

The hg outgoing command tells us what changes would be pushed into another repository.

$ cd ny-hello

$ hg outgoing ../hello-push
conparing with ../hello-push
sear chi ng for changes

changeset : 5: e8a57ef ee3b2

tag: tip

user: Bryan O Sul |l i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:58:46 2010 +0000
summary: Added an extra |ine of output

And the hg push command does the actual push.

$ hg push ../hello-push

pushing to ../hello-push

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files

As with hg pull, the hg push command does not update the working directory in the repository that it's pushing changes
into. Unlike hg pull, hg push does not provide a - u option that updates the other repository's working directory. This
asymmetry is deliberate: the repository we're pushing to might be on a remote server and shared between several people.
If we were to update its working directory while someone was working in it, their work would be disrupted.

What happensif wetry to pull or push changesand the receiving repository already hasthose changes? Nothing too exciting.

$ hg push ../hello-push
pushing to ../hello-push
searchi ng for changes

no changes found

2.8.4. Default locations

When we clone arepository, Mercuria records the location of the repository we cloned inthe. hg/ hgr c file of the new
repository. If we don't supply alocation to hg pull from or hg push to, those commands will use thislocation as a defaullt.
The hg incoming and hg outgoing commands do so too.

If you open arepository's. hg/ hgr c filein atext editor, you will see contents like the following.

[pat hs]
default = http://ww. sel eni c. conlrepo/ hg

It is possible—and often useful—to have the default location for hg push and hg outgoing be different from those for hg
pull and hg incoming. We can do this by adding adef aul t - push entry to the [pat hs] section of the. hg/ hgrc
file, asfollows.

[pat hs]
default = http://ww. sel eni c. conlrepo/ hg
def aul t - push = http://hg. exanpl e. coni hg

2.8.5. Sharing changes over a network

The commands we have covered in the previousfew sections are not limited to working with local repositories. Each works
in exactly the same fashion over a network connection; simply passin a URL instead of alocal path.

$ hg outgoing http://hg.serpentine.comtutorial/hello
conparing with http://hg.serpentine.comtutorial/hello
sear chi ng for changes

changeset : 5: e8a57ef ee3b2

tag: tip

20

A tour of Mercurial: the basics

user : Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:58:46 2010 +0000
summary: Added an extra line of output

In this example, we can see what changes we could push to the remote repository, but the repository is understandably not
set up to let anonymous users push to it.

$ hg push http://hg.serpentine.comtutorial/hello
pushing to http://hg.serpentine.comtutorial/hello
sear chi ng for changes
remote: ssl required

2.9. Starting a new project

Itisjust as easy to begin a new project as to work on one that already exists. The hg init command creates a new, empty
Mercuria repository.

6 hg init nyproject

This simply creates a repository named mypr oj ect in the current directory.

S Is -1

total 12

-rwr--r-- 1 steve steve 47 Nov 1 23:57 goodbye.c
-rwr--r-- 1 steve steve 45 Nov 1 23:57 hello.c
drwxr-xr-x 3 steve steve 4096 Nov 1 23:57 nyproject

We can tell that mypr oj ect isaMercurial repository, because it containsa. hg directory.

$ Is -al nyproject

total 12
drwxr-xr-x 3 steve steve 4096 Nov 1 23:57
dr wx- - - - - - 3 steve steve 4096 Nov 1 23:57 .

drwxr-xr-x 3 steve steve 4096 Nov 1 23:57 .hg

If we want to add some pre-existing files to the repository, we copy them into place, and tell Mercuria to start tracking
them using the hg add command.

$ cd nyproj ect

$ cp ../hello.c

$ cp ../goodbye.c
$ hg add

addi ng goodbye. c
adding hello.c

$ hg status

A goodbye. c

A hello.c

Once we are satisfied that our project looks right, we commit our changes.

6 hg commit -m'Initial conmt’

It takesjust afew momentsto start using Mercurial on anew project, which is part of its appeal. Revision control isnow so
easy to work with, we can useit on the smallest of projects that we might not have considered with amore complicated tool.

21

Chapter 3. A tour of Mercurial: merging
work

We've now covered cloning a repository, making changes in a repository, and pulling or pushing changes from one
repository into another. Our next step is mer ging changes from separate repositories.

3.1. Merging streams of work

Merging is afundamental part of working with a distributed revision control tool. Here are afew cases in which the need
to merge work arises.

 Alice and Bob each have a personal copy of arepository for a project they're collaborating on. Alice fixes abug in her
repository; Bob addsanew featurein his. They want the shared repository to contain both the bug fix and the new feature.

» Cynthiafrequently works on several different tasksfor asingle project at once, each safely isolated in its own repository.
Working this way means that she often needs to merge one piece of her own work with another.

Because we need to merge often, Mercurial makes the process easy. Let's walk through a merge. Welll begin by cloning
yet another repository (see how often they spring up?) and making a changein it.

$ cd ..

$ hg clone hello ny-newhello

updating to branch default

2 files updated, O files nerged, O files renopved, O files unresol ved
$ cd ny-new hello

Make sonme sinple edits to hello.c.

$ ny-text-editor hello.c

$ hg conmit -m'A new hello for a new day.'

We should now have two copies of hel | 0. ¢ with different contents. The histories of the two repositories have aso
diverged, asillustrated in Figure 3.1, “Divergent recent histories of the my- hel | o and ny- new hel | o repositories’.
Hereisacopy of our file from one repository.

$ cat hello.c
*
* Placed in the public domain by Bryan O Sullivan. This programis
* not covered by patents in the United States or other countries.
*/

#i ncl ude <stdio. h>

int main(int argc, char **argv)
£
printf("once nore, hello.\n");
printf("hello, world!\");
printf("hello again!'\n");
return O;

}

And hereisour sightly different version from the other repository.

$ cat ../ny-hello/hello.c

*

* Placed in the public domain by Bryan O Sullivan. This programis
* not covered by patents in the United States or other countries.
*/

#i ncl ude <stdi o. h>

int main(int argc, char **argv)

printf("hello, worldl\");

22

A tour of Mercurial: merging work

printf("hello again!\n");
return O;

}

Figure 3.1. Divergent recent historiesof themmy- hel | o and ny- new- hel | o repositories

my-hello my-new-hello
_ newest changes head revision
differ (has no children)
4; 2278 i 4: 2278
:
]
I
3: 0272 : 3: 0272
:
I
2: fefs common history 2: fefs
A
]
1
1: 82e5 : 1: 82e5
i
]
1
0: 0a04 : 0: 0a04

We already know that pulling changes from our nmy - hel | o repository will have no effect on the working directory.

$ hg pull ../ny-hello

pulling from../ny-hello

sear chi ng for changes

addi ng changesets

addi ng mani fests

addi ng file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg nerge' to nerge)

However, the hg pull command says something about “heads”.

3.1.1. Head changesets

Remember that Mercurial recordswhat the parent of each changeis. If achange hasaparent, we call it achild or descendant
of the parent. A head is a change that has no children. The tip revision is thus a head, because the newest revision in a
repository doesn't have any children. There are times when arepository can contain more than one head.

23

A tour of Mercurial: merging work

Figure 3.2. Repository contents after pulling from ny- hel | o intony- new hel | o

tip (and head)

head | 5: |

4: 2278

3: 0272

2: fef8

1l: 8Zeb

0: 0al4

In Figure 3.2, “Repository contents after pulling from my- hel | o into my- new hel | 0”, you can see the effect of the
pull frommy- hel | o into my- new hel | 0. The history that was aready present in my- new hel | o isuntouched, but
anew revision has been added. By referring to Figure 3.1, “Divergent recent histories of the my- hel | o and ny- new-

hel | o repositories’, we can see that the changeset | D remains the same in the new repository, but the revision number
has changed. (This, incidentally, isafine example of why it's not safe to use revision numberswhen discussing changesets.)
We can view the heads in arepository using the hg heads command.

$ hg heads

changeset : 6: e8ab57ef ee3b2

tag: tip

parent: 4:2278160e78d4

user: Bryan O Sul | i van <bos@er penti ne. con
dat e: Mon Nov 01 23:58:46 2010 +0000
sunmary: Added an extra |ine of output

changeset : 5:fa74432c4d29

user: Bryan O Sul | i van <bos@er penti ne. con
dat e: Mon Nov 01 23:58:54 2010 +0000
sunmary: A new hello for a new day

3.1.2. Performing the merge

What happensif we try to use the normal hg update command to update to the new tip?

$ hg update
abort: crosses branches (nmerge branches or use --check to force update)

Mercurial istelling usthat the hg update command won't do amerge; it won't update the working directory when it thinks
we might want to do amerge, unlessweforceit to do so. (Incidentally, forcing the update with hg update -C would revert
any uncommitted changes in the working directory.)

To start a merge between the two heads, we use the hg merge command.

$ hg nerge

mer ging hello.c

O files updated, 1 files nmerged, O files removed, O files unresol ved
(branch nmerge, don't forget to conmmt)

24

A tour of Mercurial: merging work

We resolve the contents of hel | 0. ¢ This updates the working directory so that it contains changes from both heads,
which isreflected in both the output of hg parents and the contents of hel | o. c.

$ hg parents

changeset : 5: fa74432c4d29

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:58:54 2010 +0000
summary: A new hello for a new day

changeset : 6: e8a57ef ee3b2

t ag: tip

parent : 4:2278160e78d4

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:58:46 2010 +0000
summary: Added an extra line of output

$ cat hello.c
*

* Placed in the public domain by Bryan O Sullivan. This programis
* not covered by patents in the United States or other countries
*/

#i ncl ude <stdi o. h>

int main(int argc, char **argv)
{
printf("once nore, hello.\n")
printf("hello, worldl\")
printf("hello again!\n")
return O

}

3.1.3. Committing the results of the merge

Whenever we've done amerge, hg parentswill display two parents until we hg commit the results of the merge.

|$ hg commt -m' Merged changes’ |

We now have a new tip revision; notice that it has both of our former heads as its parents. These are the same revisions
that were previoudly displayed by hg parents.

$ hg tip

changeset : 7:a11922c0ccd3

tag: tip

par ent : 5:fa74432c4d29

parent: 6: e8a57ef ee3b2

user : Bryan O Sul l'i van <bos@er penti ne. conr
dat e: Mon Nov 01 23:58:55 2010 +0000
summary: Mer ged changes

In Figure 3.3, “Working directory and repository during merge, and following commit”, you can see a representation of
what happens to the working directory during the merge, and how this affects the repository when the commit happens.
During the merge, the working directory has two parent changesets, and these become the parents of the new changeset.

25

A tour of Mercurial: merging work

Figure 3.3. Working directory and repository during merge, and following commit

Working directory during merge Repository after merge committed
] e : :or_kmg directory l 2 | tip
...... , 4an-onane uring merge \
6: tip (and head) | 6: |
head 5: 5.
4: 2278 4: 2278

T T

We sometimes talk about a merge having sides: the left side is the first parent in the output of hg parents, and the right
side is the second. If the working directory was at e.g. revision 5 before we began a merge, that revision will become the
left side of the merge.

3.2. Merging conflicting changes

Most merges are simple affairs, but sometimes you'll find yourself merging changes where each side modifies the same
portions of the same files. Unless both modifications are identical, this resultsin a conflict, where you have to decide how
to reconcile the different changes into something coherent.

Figure 3.4. Conflicting changesto a document

Greetings! Greetings!
I am Shehu Musa I am Aihayi Abbo
Abicha, cousin ro the Abacha, san of the
Our changes former Nigerian former Migerian Their changes
dictator Sani Abacha. T dictator Sani Abacha_ I
am contacting you in am contacting you n
confidence, and as a confidence, and as a
means of developing means of developing
Greetings!

1 am Mariam Abacha,
the wife of former

MNigerian dictator Sani Base version
Abacha. | am

contacting you in
confidence, and as a

means of developing V

Figure 3.4, “Conflicting changes to a document” illustrates an instance of two conflicting changes to a document. We
started with a single version of the file; then we made some changes; while someone else made different changes to the
same text. Our task in resolving the conflicting changesiis to decide what the file should look like.

Mercurial doesn't haveabuilt-infacility for handling conflicts. Instead, it runsan external program, usually onethat displays
some kind of graphical conflict resolution interface. By default, Mercurial tries to find one of severa different merging
tools that are likely to be installed on your system. It first tries afew fully automatic merging tools; if these don't succeed
(because the resol ution process requires human guidance) or aren't present, it tries afew different graphical merging tools.

It's also possible to get Mercurial to run a specific program or script, by setting the HGVERCGE environment variable to the
name of your preferred program.

26

A tour of Mercurial: merging work

3.2.1. Using a graphical merge tool

My preferred graphical mergetool iskdiff3, which I'll useto describe the featuresthat are common to graphical filemerging
tools. Y ou can see a screenshot of kdiff3 in action in Figure 3.5, “Using kdiff3 to merge versions of afile’. The kind of
merge it is performing is called athree-way mer ge, because there are three different versions of the file of interest to us.
The tool thus splits the upper portion of the window into three panes:

» Attheleft isthe base version of thefile, i.e. the most recent version from which the two versions we're trying to merge
are descended.

* Inthe middleis“our” version of the file, with the contents that we modified.
* Ontherightis“their” version of the file, the one that from the changeset that we're trying to merge with.

Inthe pane below theseisthe current r esult of themerge. Our task isto replaceall of thered text, which indicates unresolved
conflicts, with some sensible merger of the “ours’” and “theirs’ versions of thefile.

All four of these panes are locked together; if we scroll vertically or horizontally in any of them, the others are updated
to display the corresponding sections of their respective files.

Figure 3.5. Using kdiff3 to merge versions of afile

...flettertxt~base.C8-rvc <-> .../lettertxt.orig.2182927874 <-> .../letter.txt~other.ladxFb - KDiff3

Eile Edit Directory Movement Diffview Merge Window Settings Help

BHEd O DEem==2 2323 a8 c[JHE==]==

. [&]
A (Base): tmpyletter.txt~base.C8-rvc | - |Topline 1 B:[homesbosiscamyletter.axt.orig.2182927874 || .. |Topline 1 Ci|tmpfletter txt~other.adxFb || - |Toptine 1] |5
Greetings! Greetings! Greetings!
Bl T am Mariam #bacha, the_wife_of former B 11 am shehu_Musa Bbacha, cousin_to_the former [H|]I am alhaji_sbba Abacha, son_of_the former
Migerian dictator Sani Abacha. Nigerian dictater Sani Abacha. Nigerian dictator Sani Abacha.

o

[2] [«T°T

Output : /home/bos/scam/letter.txt
Greetings!

7 Jl<Merge Conflict=
}ngerlan dictator Sani Abacha.

o

[+

[+ e B

Number of remaining unsolved conflicts: 1 (of which 0 are whitespace)

N

For each conflicting portion of thefile, we can choose to resolve the conflict using some combination of text from the base
version, ours, or theirs. We can also manually edit the merged file at any time, in case we need to make further modifications.

There are many file merging tools available, too many to cover here. They vary in which platforms they are available for,
and in their particular strengths and weaknesses. Most are tuned for merging files containing plain text, while afew are
aimed at specialised file formats (generally XML).

3.2.2. A worked example

In this example, we will reproduce the file modification history of Figure 3.4, “ Conflicting changes to a document” above.
Let's begin by creating a repository with a base version of our document.

6 cat > letter.txt <<EOF |

27

A tour of Mercurial: merging work

G eetings!

| am Mariam Abacha, the wife of forner
Ni geri an dictator Sani Abacha.

EOF

hg add letter.txt

hg commt -m'419 scam first draft’

AV V VYV

Well clone the repository and make a change to thefile.

$ cd ..

$ hg cl one scam scam cousin

updating to branch default

files updated, O files nmerged, O files renmoved, O files unresol ved
cd scamcousin

cat > letter.txt <<EOF

G eeti ngs!

| am Shehu Miusa Abacha, cousin to the forner
Ni geri an dictator Sani Abacha.

EOF

hg commt -m'419 scam wth cousin'

®©VVVVeaEaR

And another clone, to simulate someone el se making achangetothefile. (Thishintsat theideathat it'snot all that unusual to
merge with yourself when you isolate tasksin separate repositories, and indeed to find and resol ve conflictswhile doing so.)

$ cd ..

$ hg cl one scam scam son

updating to branch default

files updated, O files nmerged, O files renoved, O files unresol ved
cd scam son

cat > letter.txt <<EOF

G eetings!

| am Al haji Abba Abacha, son of the forner
Ni gerian dictator Sani Abacha.

ECF

hg conmit -m'419 scam wth son'

“®©VVVVaEaRE

Having created two different versions of the file, we'll set up an environment suitable for running our merge.

$ cd ..

$ hg cl one scam cousi n scam nerge

updating to branch default

1 files updated, O files nerged, O files renoved, O files unresol ved
$ cd scam nerge

$ hg pull -u ../scamson

pulling from../scam son

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
not updating, since new heads added

(run 'hg heads' to see heads, 'hg nerge' to nerge)

In thisexample, I'll set HGQVERGE to tell Mercurial to use the non-interactive mer ge command. Thisis bundled with many
Unix-like systems. (If you're following this example on your computer, don't bother setting HGVERCE. Y ou'll get dropped
into a GUI file merge tool instead, which is much preferable.)

$ export HGVERGE=ner ge

$ hg nerge

merging letter.txt

bi n/sh: merge: not found

merging letter.txt fail ed!

O files updated, O files merged, O files renoved, 1 files unresolved
use 'hg resolve' to retry unresolved file nerges or 'hg update -C .' to abandon
$ cat letter.txt

G eeti ngs!

| am Shehu Musa Abacha, cousin to the forner

Ni geri an dictator Sani Abacha.

Because mer ge can't resolve the conflicting changes, it leaves mer ge mar ker sinside the file that has conflicts, indicating
which lines have conflicts, and whether they came from our version of thefile or theirs.

28

A tour of Mercurial: merging work

Mercurial can tell from the way mer ge exits that it wasn't able to merge successfully, so it tells us what commands welll
need to run if we want to redo the merging operation. This could be useful if, for example, we were running a graphical
merge tool and quit because we were confused or realised we had made a mistake.

If automatic or manual merges fail, there's nothing to prevent us from “fixing up” the affected files ourselves, and
committing the results of our merge:

$ cat > letter.txt <<EOF

> & eetings!

> | am Bryan O Sullivan, no relation of the former
> Nigerian dictator Sani Abacha

> EOF

$ hg resolve -mletter.txt

$ hg commit -m' Send nme your noney

$ hg tip

changeset : 3: eef 4db8002ef

t ag: tip

parent: 1: 01d8e74839c2

parent: 2: faa37f 839264

user: Bryan O Sul | i van <bos@er penti ne. con
dat e: Mon Nov 01 23:58:58 2010 +0000
sunmary: Send nme your noney

Whereisthe hg resolve command?
The hg resolve command wasintroduced in Mercuria 1.1, which was released in December 2008. If you are
using an older version of Mercurial (run hg version to see), this command will not be present. If your version

of Mercurial is older than 1.1, you should strongly consider upgrading to a newer version before trying to
tackle complicated merges.

3.3. Simplifying the pull-merge-commit sequence

The process of merging changes as outlined above is straightforward, but requires running three commands in sequence.

hg pull -u
hg nerge
hg commit -m' Merged renote changes

In the case of the final commit, you also need to enter a commit message, which is almost always going to be a piece of
uninteresting “boilerplate” text.

It would be nice to reduce the number of steps needed, if this were possible. Indeed, Mercurial is distributed with an
extension called f et ch that does just this.

Mercuria provides a flexible extension mechanism that lets people extend its functionality, while keeping the core of
Mercurial small and easy to deal with. Some extensions add new commands that you can use from the command line, while
others work “behind the scenes,” for example adding capabilitiesto Mercurial's built-in server mode.

Thef et ch extension adds a new command called, not surprisingly, hg fetch. This extension acts as a combination of hg
pull -u, hg merge and hg commit. It begins by pulling changes from another repository into the current repository. If it
finds that the changes added a new head to the repository, it updates to the new head, begins a merge, then (if the merge
succeeded) commitsthe result of the merge with an automati cally-generated commit message. If no new heads were added,
it updates the working directory to the new tip changeset.

Enabling the f et ch extension is easy. Edit the . hgr ¢ file in your home directory, and either go to the ext ensi ons
section or create an ext ensi ons section. Then add aline that smply reads“f et ch=".

[ext ensi ons]
fetch =

(Normally, the right-hand side of the “=" would indicate where to find the extension, but sincethef et ch extensionisin
the standard distribution, Mercurial knows where to search for it.)

29

A tour of Mercurial: merging work

3.4. Renaming, copying, and merging

During the life of a project, we will often want to change the layout of its files and directories. This can be as simple as
renaming asinglefile, or as complex as restructuring the entire hierarchy of files within the project.

Mercurial supports these kinds of complex changes fluently, provided we tell it what we're doing. If we want to rename a
file, we should use the hg rename’ command to rename it, so that Mercurial can do the right thing later when we merge.

We will cover the use of these commands in more detail in Section 5.3, “Copying files’.

bt you're a Unix user, you'll be glad to know that the hg rename command can be abbreviated as hg mv.

30

Chapter 4. Behind the scenes

Unlike many revision control systems, the concepts upon which Mercurial is built are smple enough that it's easy to
understand how the software really works. Knowing these details certainly isn't necessary, soit is certainly safeto skip this
chapter. However, | think you will get more out of the software with a“mental model” of what's going on.

Being able to understand what's going on behind the scenes gives me confidence that Mercurial hasbeen carefully designed
to be both safe and efficient. And just asimportantly, if it's easy for meto retain a good idea of what the software is doing
when | perform arevision control task, I'm less likely to be surprised by its behavior.

In this chapter, well initially cover the core concepts behind Mercurial's design, then continue to discuss some of the
interesting details of itsimplementation.

4.1. Mercurial's historical record

4.1.1. Tracking the history of a single file

When Mercurial tracks modifications to afile, it stores the history of that file in a metadata object called a filelog. Each
entry in the filelog contains enough information to reconstruct one revision of the file that is being tracked. Filelogs are
stored as files in the . hg/ st or e/ dat a directory. A filelog contains two kinds of information: revision data, and an
index to help Mercurial to find arevision efficiently.

A filethat islarge, or hasalot of history, hasitsfilelog stored in separate data (“. d” suffix) andindex (. i " suffix) files.
For small files without much history, the revision data and index are combined in asingle“. i ” file. The correspondence
between afile in the working directory and the filelog that tracks its history in the repository isillustrated in Figure 4.1,
“Relationships between filesin working directory and filelogs in repository”.

Figure 4.1. Relationships between filesin working directory and filelogsin repository

Working directory Repository

README ———————> .hg/store/data/_r_e_a_d m e.i

.hg/store/data/src/hello.c.d

src/hello.c

.hg/store/data/src/hello.c.i

4.1.2. Managing tracked files

Mercurial uses a structure called a manifest to collect together information about the files that it tracks. Each entry in the
manifest contains information about the files present in a single changeset. An entry records which files are present in the
changeset, the revision of each file, and afew other pieces of file metadata.

4.1.3. Recording changeset information

The changel og contains information about each changeset. Each revision records who committed a change, the changeset
comment, other pieces of changeset-related information, and the revision of the manifest to use.

31

Behind the scenes

4.1.4. Relationships between revisions

Within a changelog, a manifest, or afilelog, each revision stores a pointer to its immediate parent (or to its two parents,
if it'samergerevision). As | mentioned above, there are also relationships between revisions acr oss these structures, and
they are hierarchical in nature.

For every changeset in a repository, there is exactly one revision stored in the changel og. Each revision of the changelog

contains a pointer to asinglerevision of the manifest. A revision of the manifest stores apointer to asingle revision of each
filelog tracked when that changeset was created. Theserelationships areillustrated in Figure 4.2, “ M etadata rel ationships’.

Figure 4.2. Metadata relationships

Changelog
i
I
Manifest !
Y Y

S

o
1l

-\.“‘
h_b‘
gy

= ———————

Filelogs

T
T

32

Behind the scenes

Astheillustration shows, thereis not a“oneto one” relationship between revisions in the changel og, manifest, or filelog.
If afile that Mercuria tracks hasn't changed between two changesets, the entry for that file in the two revisions of the
manifest will point to the same revision of its filelog?.

4.2. Safe, efficient storage

The underpinnings of changelogs, manifests, and filelogs are provided by a single structure called the revlog.

4.2.1. Efficient storage

The revlog provides efficient storage of revisions using a delta mechanism. Instead of storing a complete copy of afile
for each revision, it stores the changes needed to transform an older revision into the new revision. For many kinds of file
data, these deltas are typically afraction of apercent of the size of afull copy of afile.

Some obsolete revision control systems can only work with deltas of text files. They must either store binary files as
complete snapshots or encoded into atext representation, both of which are wasteful approaches. Mercuria can efficiently
handle deltas of files with arbitrary binary contents; it doesn't need to treat text as special.

4.2.2. Safe operation

Mercurial only ever appends datato the end of arevlog file. It never modifies a section of afile after it haswrittenit. This
is both more robust and efficient than schemes that need to modify or rewrite data.

In addition, Mercuria treats every write as part of atransaction that can span a number of files. A transaction is atomic:
either the entire transaction succeeds and its effects are all visible to readers in one go, or the whole thing is undone. This
guarantee of atomicity meansthat if you're running two copies of Mercurial, where oneis reading data and one is writing
it, the reader will never see a partialy written result that might confuse it.

The fact that Mercurial only appends to files makes it easier to provide this transactional guarantee. The easier it isto do
stuff like this, the more confident you should be that it's done correctly.

4.2.3. Fast retrieval

Mercurial cleverly avoids a pitfall common to al earlier revision control systems: the problem of inefficient retrieval.
Most revision control systems store the contents of arevision asan incremental seriesof modificationsagainst a“ snapshot”.
(Some base the snapshot on the oldest revision, others on the newest.) To reconstruct a specific revision, you must first
read the snapshot, and then every one of the revisions between the snapshot and your target revision. The more history that
afile accumulates, the more revisions you must read, hence the longer it takes to reconstruct a particular revision.

Itis possible (though unusual) for the manifest to remain the same between two changesets, in which case the changelog entries for those changesets will point
to the same revision of the manifest.

33

Behind the scenes

Figure 4.3. Snapshot of arevlog, with incremental deltas
Revlog index (.i file) Revlog data (.d file)

Index, rev 7

The innovation that Mercurial applies to this problem is simple but effective. Once the cumulative amount of delta
information stored since the last snapshot exceeds a fixed threshold, it stores a new snapshot (compressed, of course),
instead of another delta. This makesit possible to reconstruct any revision of afile quickly. This approach works so well
that it has since been copied by several other revision control systems.

Figure 4.3, “ Snapshot of arevlog, with incremental deltas” illustratestheidea. In an entry in arevlog'sindex file, Mercurial
stores the range of entries from the data file that it must read to reconstruct a particular revision.

4.2.3.1. Aside: the influence of video compression

If you're familiar with video compression or have ever watched a TV feed through a digital cable or satellite service, you
may know that most video compression schemes store each frame of video as a delta against its predecessor frame.

Mercuria borrows thisideato make it possible to reconstruct arevision from a snapshot and a small number of deltas.

4.2.4. ldentification and strong integrity

Along with delta or snapshot information, a revlog entry contains a cryptographic hash of the data that it represents. This
makes it difficult to forge the contents of arevision, and easy to detect accidental corruption.

Hashes provide more than a mere check against corruption; they are used as the identifiers for revisions. The changeset
identification hashes that you see as an end user are from revisions of the changelog. Although filelogs and the manifest
also use hashes, Mercuria only uses these behind the scenes.

Mercurial verifiesthat hashes are correct when it retrievesfile revisions and when it pulls changes from another repository.
If it encounters an integrity problem, it will complain and stop whatever it's doing.

In addition to the effect it has on retrieval efficiency, Mercurial's use of periodic snapshots makes it more robust against
partial data corruption. If a reviog becomes partly corrupted due to a hardware error or system bug, it's often possible to
reconstruct some or most revisions from the uncorrupted sections of the revlog, both before and after the corrupted section.
This would not be possible with a delta-only storage model.

4.3. Revision history, branching, and merging

Every entry inaMercurial reviog knows the identity of itsimmediate ancestor revision, usually referred to asitsparent. In
fact, arevision contains room for not one parent, but two. Mercurial uses a special hash, called the “null ID”, to represent
theidea“thereis no parent here”. This hash is simply a string of zeroes.

Behind the scenes

In Figure 4.4, “The conceptual structure of a revlog”, you can see an example of the conceptual structure of a revlog.
Filelogs, manifests, and changelogs all have this same structure; they differ only in the kind of data stored in each delta
or snapshot.

Thefirst revisionin arevlog (at the bottom of the image) hasthe null ID in both of its parent slots. For a“normal” revision,
its first parent slot contains the ID of its parent revision, and its second contains the null 1D, indicating that the revision
has only onereal parent. Any two revisions that have the same parent ID are branches. A revision that represents a merge
between branches has two normal revision IDs in its parent slots.

Figure 4.4. The conceptual structureof areviog

Rorvishon bash
Ihi?doRafaTa

Head revision
{no children)

First pasest Seanad parent
I4bERYal%eal Fxopoonoonon

b

Rorvishon bash
HbEhTaldeal

Roerwision St {oelta of snapehot)

Merge revision
(two parents)

Seanad parent
Jkreantzzen

Firs: parert
ShENT22ebad

Reeidom bash Fovision besh
ShENGAEZebadd FER AN LRTD

Rewision data | delts o sraphad)

Firs pooest
fefdoBhoZadk

Branches
(two revisions,
same parent)

rf9dedbaladh “oooooooooog

Rorvishon bash
£IdoihaoZadh

First revision
(both parents null)

nnoooooooaas Fxopoonoonon

4.4. The working directory

In the working directory, Mercuria stores a snapshot of the files from the repository as of a particular changeset.

Theworking directory “knows’ which changeset it contains. When you update the working directory to contain a particular
changeset, Mercurial looks up the appropriate revision of the manifest to find out which files it was tracking at the time
that changeset was committed, and which revision of each file was then current. It then recreates a copy of each of those
files, with the same contents it had when the changeset was committed.

The dirstate is a specia structure that contains Mercurial's knowledge of the working directory. It is maintained as afile
named . hg/ di r st at e inside arepository. The dirstate details which changeset the working directory is updated to, and

35

Behind the scenes

all of the files that Mercurial is tracking in the working directory. It also lets Mercuria quickly notice changed files, by
recording their checkout times and sizes.

Just as arevision of arevlog has room for two parents, so that it can represent either a normal revision (with one parent)
or a merge of two earlier revisions, the dirstate has dots for two parents. When you use the hg update command, the
changeset that you update to is stored in the “first parent” dlot, and the null 1D in the second. When you hg mer ge with
another changeset, the first parent remains unchanged, and the second parent isfilled in with the changeset you're merging
with. The hg par ents command tells you what the parents of the dirstate are.

4.4.1. What happens when you commit

The dirstate stores parent information for more than just book-keeping purposes. Mercuria uses the parents of the dirstate
asthe parents of a new changeset when you perform a commit.

Figure 4.5. The working directory can have two parents

History in repository Parents of working directory

el1639888bb2f

Tbl64d8bac5e

Figure 4.5, “The working directory can have two parents’ shows the normal state of the working directory, whereit hasa
single changeset as parent. That changeset is the tip, the newest changeset in the repository that has no children.

Figure 4.6. The working directory gains new parents after a commit

History in repository Parents of working directory

New
changeset

e7639888bb2f

Tbled4d8bache

36

Behind the scenes

It's useful to think of the working directory as “the changeset I'm about to commit”. Any files that you tell Mercurial
that you've added, removed, renamed, or copied will be reflected in that changeset, as will modifications to any files that
Mercurial is aready tracking; the new changeset will have the parents of the working directory as its parents.

After a commit, Mercurial will update the parents of the working directory, so that the first parent is the ID of the new
changeset, and the second is the null ID. This is shown in Figure 4.6, “The working directory gains new parents after a
commit”. Mercurial doesn't touch any of the filesin the working directory when you commit; it just modifies the dirstate
to note its new parents.

4.4.2. Creating a new head

It's perfectly normal to update the working directory to a changeset other than the current tip. For example, you might
want to know what your project looked like last Tuesday, or you could be looking through changesets to see which one
introduced abug. In caseslikethis, the natural thing to do is update the working directory to the changeset you're interested
in, and then examine the files in the working directory directly to see their contents as they were when you committed that
changeset. The effect of thisis shown in Figure 4.7, “The working directory, updated to an older changeset”.

Figure4.7. Theworking directory, updated to an older changeset

History in repositor Parents of working directo
Y p ¥ ry

First parent

JW&BbacSe

el639888bb2f

}

Thbl64dB8bache

Having updated the working directory to an older changeset, what happens if you make some changes, and then commit?
Mercurial behavesin the sameway as| outlined above. The parents of the working directory become the parents of the new
changeset. This new changeset has no children, so it becomes the new tip. And the repository now contains two changesets
that have no children; we call these heads. Y ou can see the structure that this createsin Figure 4.8, “ After acommit made
while synced to an older changeset”.

37

Behind the scenes

Figure 4.8. After acommit made while synced to an older changeset

Pre-existing head Newly created head (and tip) Parents of working directory
|

e7639888bb2f

Tbl64d8bac5e

Note

If you're new to Mercurial, you should keep in mind acommon “error”, which isto use the hg pull command
without any options. By default, the hg pull command does not update the working directory, so you'll bring
new changesets into your repository, but the working directory will stay synced at the same changeset as
beforethe pull. If you make some changes and commit afterwards, you'll thus create anew head, because your
working directory isn't synced to whatever the current tip is. To combine the operation of a pull, followed
by an update, run hg pull -u.

| put theword “error” in quotes because all that you need to do to rectify the situation where you created anew
head by accident ishg mer ge, then hg commit. In other words, this almost never has negative consequences,
it's just something of a surprise for newcomers. I'll discuss other ways to avoid this behavior, and why
Mercurial behavesin thisinitially surprising way, later on.

4.4.3. Merging changes

When you run the hg merge command, Mercurial leaves the first parent of the working directory unchanged, and sets the
second parent to the changeset you're merging with, as shown in Figure 4.9, “Merging two heads’.

38

Behind the scenes

Figure 4.9. Merging two heads

Pre-existing head Newly created head (and tip) Parents of working directory
|

First parent (unchanged)

e7639888bb2f

Tble4d8bache

el63T888bbif

Mercuria also has to modify the working directory, to merge the files managed in the two changesets. Simplified alittle,
the merging process goes like this, for every file in the manifests of both changesets.

If neither changeset has modified afile, do nothing with that file.
If one changeset has modified afile, and the other hasn't, create the modified copy of the file in the working directory.
If one changeset hasremoved afile, and the other hasn't (or has also del eted it), del ete the file from the working directory.

If one changeset has removed afile, but the other has modified the file, ask the user what to do: keep the modified file,
or removeit?

If both changesets have modified afile, invoke an external merge program to choose the new contents for the merged
file. This may require input from the user.

If one changeset has modified a file, and the other has renamed or copied the file, make sure that the changes follow
the new name of thefile.

There are more details—merging has plenty of corner cases—but these are the most common choices that are involved
in a merge. As you can see, most cases are completely automatic, and indeed most merges finish automatically, without
requiring your input to resolve any conflicts.

When you're thinking about what happens when you commit after a merge, once again the working directory is “the
changeset I'm about to commit”. After the hg mer ge command completes, the working directory has two parents; these
will become the parents of the new changeset.

39

Behind the scenes

Mercurial lets you perform multiple merges, but you must commit the results of each individual merge as you go. This
is necessary because Mercurial only tracks two parents for both revisions and the working directory. While it would be
technically feasible to merge multiple changesets at once, Mercurial avoidsthisfor simplicity. With multi-way merges, the
risks of user confusion, nasty conflict resolution, and making a terrible mess of a merge would grow intolerable.

4.4.4. Merging and renames

A surprising number of revision control systems pay little or no attention to afile's name over time. For instance, it used
to be common that if afile got renamed on one side of a merge, the changes from the other side would be silently dropped.

Mercurial records metadata when you tell it to perform arename or copy. It uses this metadata during a merge to do the
right thing in the case of amerge. For instance, if | rename afile, and you edit it without renaming it, when we merge our
work the file will be renamed and have your edits applied.

4.5. Other interesting design features

In the sections above, I've tried to highlight some of the most important aspects of Mercurial's design, to illustrate that it
pays careful attention to reliability and performance. However, the attention to detail doesn't stop there. There are anumber
of other aspects of Mercuria's construction that | personally find interesting. I'll detail a few of them here, separate from
the “big ticket” items above, so that if you're interested, you can gain a better idea of the amount of thinking that goes
into awell-designed system.

4.5.1. Clever compression

When appropriate, Mercurial will store both snapshots and deltas in compressed form. It does this by always trying to
compress a snapshot or delta, but only storing the compressed version if it's smaller than the uncompressed version.

This means that Mercurial does “the right thing” when storing a file whose native form is compressed, such as a zi p
archive or a JPEG image. When these types of files are compressed a second time, the resulting file is usually bigger than
the once-compressed form, and so Mercurial will store the plain zi p or JPEG.

Deltas between revisions of a compressed file are usually larger than snapshots of the file, and Mercurial again does “the
right thing” in these cases. It finds that such a delta exceeds the threshold at which it should store a complete snapshot of
thefile, so it stores the snapshot, again saving space compared to a naive delta-only approach.

4.5.1.1. Network recompression

When storing revisionson disk, Mercurial usesthe*deflate” compression algorithm (the same one used by the popular zi p
archive format), which balances good speed with a respectable compression ratio. However, when transmitting revision
data over a network connection, Mercurial uncompresses the compressed revision data.

If the connection isover HTTP, Mercurial recompresses the entire stream of data using a compression algorithm that gives
a better compression ratio (the Burrows-Wheeler algorithm from the widely used bzi p2 compression package). This
combination of algorithm and compression of the entire stream (instead of a revision at a time) substantially reduces the
number of bytes to be transferred, yielding better network performance over most kinds of network.

If the connection is over ssh, Mercurial doesn't recompress the stream, because ssh can aready do thisitself. Y ou can tell
Mercurial to always use ssh's compression feature by editing the . hgr ¢ filein your home directory as follows.

[ui]
ssh = ssh -C

4.5.2. Read/write ordering and atomicity

Appending to filesisn't the whole story when it comes to guaranteeing that a reader won't see a partial write. If you recall
Figure 4.2, “Metadata relationships’, revisions in the changelog point to revisions in the manifest, and revisions in the
manifest point to revisionsin filelogs. This hierarchy is deliberate.

40

Behind the scenes

A writer starts a transaction by writing filelog and manifest data, and doesn't write any changelog data until those are
finished. A reader starts by reading changelog data, then manifest data, followed by filelog data.

Since the writer has always finished writing filelog and manifest data before it writes to the changel og, areader will never
read a pointer to a partially written manifest revision from the changelog, and it will never read a pointer to a partially
written filelog revision from the manifest.

4.5.3. Concurrent access

The read/write ordering and atomicity guarantees mean that Mercurial never needs to lock arepository when it's reading
data, even if the repository is being written to while the read is occurring. This has a big effect on scalability; you can
have an arbitrary number of Mercurial processes safely reading data from arepository all at once, no matter whether it's
being written to or not.

The lockless nature of reading means that if you're sharing a repository on a multi-user system, you don't need to grant
other local users permission to write to your repository in order for them to be able to cloneit or pull changes from it; they
only need read permission. (This is not a common feature among revision control systems, so don't take it for granted!
Most require readers to be able to lock a repository to access it safely, and this requires write permission on at least one
directory, which of course makes for al kinds of nasty and annoying security and administrative problems.)

Mercurial uses locks to ensure that only one process can write to a repository at a time (the locking mechanism is safe
even over filesystemsthat are notoriously hostile to locking, such as NFS). If arepository islocked, awriter will wait for a
whileto retry if the repository becomes unlocked, but if the repository remains locked for too long, the process attempting
to write will time out after a while. This means that your daily automated scripts won't get stuck forever and pile up if a
system crashes unnoticed, for example. (Y es, the timeout is configurable, from zero to infinity.)

4.5.3.1. Safe dirstate access

Aswith revision data, Mercurial doesn't take alock to read the dirstate file; it does acquire alock to write it. To avoid the
possibility of reading a partially written copy of the dirstate file, Mercurial writesto afile with a unique name in the same
directory asthe dirstatefile, then renamesthe temporary file atomicaly todi r st at e. Thefilenameddi r st at e isthus
guaranteed to be complete, not partially written.

4.5.4. Avoiding seeks

Critical to Mercurial's performance is the avoidance of seeks of the disk head, since any seek is far more expensive than
even a comparatively large read operation.

This is why, for example, the dirstate is stored in a single file. If there were a dirstate file per directory that Mercurial
tracked, the disk would seek once per directory. Instead, Mercurial reads the entire single dirstate file in one step.

Mercurial also usesa“copy on write” scheme when cloning arepository on local storage. Instead of copying every reviog
file from the old repository into the new repository, it makes a “hard link”, which is a shorthand way to say “these two
names point to the same file’. When Mercurial is about to write to one of arevlog's files, it checks to see if the number
of names pointing at the file is greater than one. If it is, more than one repository is using the file, so Mercurial makes a
new copy of the filethat is private to this repository.

A few revision control developers have pointed out that this idea of making a complete private copy of afile is not very
efficient in its use of storage. While this is true, storage is cheap, and this method gives the highest performance while
deferring most book-keeping to the operating system. An alternative scheme would most likely reduce performance and
increase the complexity of the software, but speed and simplicity are key to the “feel” of day-to-day use.

4.5.5. Other contents of the dirstate

BecauseMercurial doesn't forceyoutotell it when you'remodifying afile, it usesthe dirstateto store some extrainformation
S0 it can determine efficiently whether you have modified afile. For each file in the working directory, it stores the time
that it last modified the file itself, and the size of thefile at that time.

41

Behind the scenes

When you explicitly hg add, hg remove, hg rename or hg copy files, Mercurial updates the dirstate so that it knows what
to do with those files when you commit.

The dirstate helps Mercurial to efficiently check the status of filesin arepository.

» When Mercuria checks the state of a file in the working directory, it first checks afile's modification time against the
timein the dirstate that records when Mercurial last wrotethefile. If the last modified time is the same as the time when
Mercurial wrote the file, the file must not have been modified, so Mercurial does not need to check any further.

* If thefile's size has changed, the file must have been modified. If the modification time has changed, but the size has
not, only then does Mercuria need to actually read the contents of the fileto seeif it has changed.

Storing the modification time and size dramatically reduces the number of read operations that Mercurial needsto perform
when we run commands like hg status. Thisresultsin large performance improvements.

42

Chapter 5. Mercurial in daily use

5.1. Telling Mercurial which files to track

Mercurial does not work with filesin your repository unless you tell it to manage them. The hg status command will tell
you which files Mercurial doesn't know about; it usesa“?” to display such files.

Totell Mercurial to track afile, use the hg add command. Once you have added afile, the entry in the output of hg status
for that file changes from “?” to “A”.

hg init add-exanple

cd add- exanpl e

echo a > nyfile.txt

hg status

myfile.txt

hg add nyfile.txt

hg status

myfile.txt

hg conmt -m' Added one file'
hg status

(2RI RE R IENE R R

After you run ahg commit, the files that you added before the commit will no longer be listed in the output of hg status.
Thereason for thisisthat by default, hg status only tells you about “interesting” files—those that you have (for example)
modified, removed, or renamed. If you have a repository that contains thousands of files, you will rarely want to know
about filesthat Mercurial istracking, but that have not changed. (Y ou can still get thisinformation; we'll return to thislater.)

Once you add afile, Mercurial doesn't do anything with it immediately. Instead, it will take a snapshot of thefile's state the
next time you perform a commit. It will then continue to track the changes you make to the file every time you commit,
until you remove the file.

5.1.1. Explicit versus implicit file naming

A useful behavior that Mercuria hasisthat if you pass the name of adirectory to acommand, every Mercurial command
will treat this as “| want to operate on every filein this directory and its subdirectories”.

$ nkdir b

$ echo b > b/sonefile.txt
$ echo ¢ > b/source.cpp
$ nkdir b/d

$ echo d > b/d/test.h

$ hg add b

adding b/d/test.h

addi ng b/ sonefile.txt

addi ng b/ source. cpp

$ hg commit -m'Added all files in subdirectory

Notice in this example that Mercurial printed the names of the files it added, whereas it didn't do so when we added the
filenamed nmyfi | e. t xt inthe earlier example.

What's going on is that in the former case, we explicitly named the file to add on the command line. The assumption that
Mercurial makes in such cases is that we know what we are doing, and it doesn't print any output.

However, when we imply the names of files by giving the name of a directory, Mercurial takes the extra step of printing
the name of each file that it does something with. This makes it more clear what is happening, and reduces the likelihood
of asilent and nasty surprise. This behavior is common to most Mercurial commands.

5.1.2. Mercurial tracks files, not directories

Mercurial does not track directory information. Instead, it tracks the path to afile. Before creating afile, it first creates
any missing directory components of the path. After it deletes afile, it then deletes any empty directories that were in the
deleted file's path. This sounds like a trivial distinction, but it has one minor practical consequence: it is not possible to
represent a completely empty directory in Mercurial .

43

Mercurial in daily use

Empty directoriesarerarely useful, and there are unintrusive workarounds that you can use to achieve an appropriate effect.
The developers of Mercurial thus felt that the complexity that would be required to manage empty directories was not
worth the limited benefit this feature would bring.

If you need an empty directory in your repository, there are a few ways to achieve this. One isto create a directory, then
hg add a“hidden” file to that directory. On Unix-like systems, any file name that begins with aperiod (“. ") istreated as
hidden by most commands and GUI tools. This approach isillustrated below.

$ hg init hidden-exanple

$ cd hi dden- exanpl e

$ nkdir enpty

$ touch enpty/. hidden

$ hg add enpty/. hi dden

$ hg conmmt -m' Manage an enpty-I|ooking directory
$ I's empty

$ cd .

$

hg cl one hi dden-exanpl e tnp

updating to branch default

1 files updated, O files nerged, O files renmoved, O files unresol ved
$ I's tnp

enpty

$ I's tnp/empty

Another way to tackle a need for an empty directory is to simply create one in your automated build scripts before they
will need it.

5.2. How to stop tracking a file

Once you decide that a file no longer belongs in your repository, use the hg remove command. This deletes the file, and
tells Mercurial to stop tracking it (which will occur at the next commit). A removed file is represented in the output of
hg statuswitha“R’.

hg init renove-exanpl e
cd renove- exanpl e

echo a > a

nkdir b

echo b > b/b

hg add a b

addi ng b/ b

$ hg commit -m'Snall exanple for file renoval
$ hg renove a

$ hg status

R a

$ hg renove b

renmovi ng b/ b

R R R TR

After you hg remove afile, Mercurial will no longer track changes to that file, even if you recreate afile with the same
name in your working directory. If you do recreate a file with the same name and want Mercurial to track the new file,
simply hg add it. Mercurial will know that the newly added fileis not related to the old file of the same name.

5.2.1. Removing a file does not affect its history

It isimportant to understand that removing afile has only two effects.

* It removes the current version of the file from the working directory.

* It stops Mercuria from tracking changesto the file, from the time of the next commit.
Removing afile does not in any way alter the history of thefile.

If you update the working directory to a changeset that was committed when it was still tracking a file that you later
removed, the file will reappear in the working directory, with the contents it had when you committed that changeset. If
you then update the working directory to alater changeset, in which the file had been removed, Mercurial will once again
remove the file from the working directory.

Mercurial in daily use

5.2.2. Missing files

Mercurial considers a file that you have deleted, but not used hg remove to delete, to be missing. A missing file is

represented with “! ” in the output of hg status. Mercurial commands will not generally do anything with missing files.
$ hg init mssing-exanple

$ cd ni ssing-exanpl e

$ echo a > a

$ hg add a

$ hg conmmit -m'File about to be m ssing

$ rma

$ hg status

| a

If your repository contains a file that hg status reports as missing, and you want the file to stay gone, you can run hg
remove- - af t er at any timelater on, to tell Mercurial that you really did mean to remove thefile.

$ hg renpve --after a
$ hg status
R a

Ontheother hand, if you deleted the missing file by accident, give hg revert the name of thefileto recover. It will reappear,
in unmodified form.

$ hg revert a
$ cat a

a

$ hg status

5.2.3. Aside: why tell Mercurial explicitly to remove a file?

Y ou might wonder why Mercurial requiresyou to explicitly tell it that you are deleting afile. Early during the development
of Mercurial, it let you delete a file however you pleased; Mercurial would notice the absence of the file automatically
when you next ran a hg commit, and stop tracking the file. In practice, this made it too easy to accidentally remove a
file without noticing.

5.2.4. Useful shorthand—adding and removing files in one
step

Mercurial offers a combination command, hg addremove, that adds untracked files and marks missing files as removed.

hg init addrenove-exanpl e
cd addr enmove- exanpl e

echo a > a

echo b > b

hg addr enove

adding a

adding b

© P BH P KB

The hg commit command also provides a - A option that performs this same add-and-remove, immediately followed by
acommit.

$ echo ¢ > ¢
$ hg commit -A -m'Commit with addrenove
adding ¢

5.3. Copying files

Mercurial provides ahg copy command that lets you make anew copy of afile. When you copy afile using this command,
Mercurial makes a record of the fact that the new file is a copy of the original file. It treats these copied files specially
when you merge your work with someone else's.

45

Mercurial in daily use

5.3.1. The results of copying during a merge

What happens during amerge is that changes “follow” acopy. To best illustrate what this means, |et's create an example.
WEe'll start with the usual tiny repository that contains asinglefile.

hg init ny-copy

cd ny-copy

echo line > file

hg add file

hg commit -m'Added a file

(R R R TR

We need to do some work in parallel, so that we'll have something to merge. So let's clone our repository.

$ cd .

$ hg cl one ny-copy your-copy

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved

Back in our initial repository, let's use the hg copy command to make a copy of the first file we created.

$ cd ny-copy
$ hg copy file newfile

If we look at the output of the hg status command afterwards, the copied file looks just like anormal added file.

$ hg status
A newfile

But if we pass the - C option to hg status, it prints another line of output: thisis the file that our newly-added file was
copied from.

$ hg status -C
A new-file
file
$ hg commit -m ' Copied file'

Now, back in the repository we cloned, let's make a change in parallel. We'll add a line of content to the original file that
we created.

$ cd ../your-copy
$ echo 'new contents' >> file
$ hg commit -m ' Changed file'

Now we have amodified f i | e in thisrepository. When we pull the changes from the first repository, and merge the two
heads, Mercuria will propagate the changes that we made locally tof i | e intoitscopy, new-fi | e.

$ hg pull ../ny-copy

pul ling from../ny-copy

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg nmerge' to nerge)

$ hg nerge

merging file and newfile to newfile

O files updated, 1 files nmerged, O files removed, O files unresol ved
(branch merge, don't forget to conmmit)

$ cat newfile

Iine

new contents

5.3.2. Why should changes follow copies?

This behavior—of changesto afile propagating out to copies of the file—might seem esoteric, but in most casesit's highly
desirable.

46

Mercurial in daily use

First of all, remember that this propagation only happens when you merge. So if you hg copy a file, and subsequently
modify the origina file during the normal course of your work, nothing will happen.

The second thing to know is that modifications will only propagate across a copy as long as the changeset that you're
merging changes from hasn't yet seen the copy.

The reason that Mercurial does thisis as follows. Let's say | make an important bug fix in a source file, and commit my
changes. Meanwhile, you've decided to hg copy the filein your repository, without knowing about the bug or having seen
the fix, and you have started hacking on your copy of thefile.

If you pulled and merged my changes, and Mercurial didn't propagate changes across copies, your new source file would
now contain the bug, and unless you knew to propagate the bug fix by hand, the bug would remain in your copy of thefile.

By automatically propagating the change that fixed the bug from the original file to the copy, Mercurial preventsthis class
of problem. To my knowledge, Mercurial istheonly revision control system that propagates changes across copieslikethis.

Once your change history has a record that the copy and subsegquent merge occurred, there's usually no further need to
propagate changes from the original file to the copied file, and that'swhy Mercurial only propagates changes across copies
at the first merge, and not afterwards.

5.3.3. How to make changes not follow a copy

If, for some reason, you decide that this business of automatically propagating changes across copiesis not for you, simply
use your system's normal file copy command (on Unix-like systems, that's cp) to make a copy of afile, then hg add the
new copy by hand. Before you do so, though, please do reread Section 5.3.2, “Why should changes follow copies?’, and
make an informed decision that this behavior is not appropriate to your specific case.

5.3.4. Behavior of the hg copy command

When you use the hg copy command, Mercurial makes a copy of each source file as it currently stands in the working
directory. This means that if you make some modificationsto afile, then hg copy it without first having committed those
changes, the new copy will also contain the modifications you have made up until that point. (I find this behavior alittle
counterintuitive, which iswhy | mention it here.)

The hg copy command acts similarly to the Unix cp command (you can usethe hg cp aliasif you prefer). We must supply
two or more arguments, of which the last istreated as the destination, and all others are sour ces.

If you pass hg copy asingle file as the source, and the destination does not exist, it creates a new file with that name.

$ nmkdir k

$ hg copy a k
$Is k

a

If the destination is a directory, Mercurial copies its sources into that directory.

$ nkdir d

$ hg copy a b d
$1s d

a b

Copying adirectory isrecursive, and preserves the directory structure of the source.

$ hg copy z e
copying z/alc to elalc

If the source and destination are both directories, the source tree is recreated in the destination directory.

$ hg copy z d
copying z/alc to d/z/alc

As with the hg remove command, if you copy a file manually and then want Mercurial to know that you've copied the
file, simply usethe - - af t er option to hg copy.

47

Mercurial in daily use

$ cp an
$ hg copy --after an

5.4. Renaming files

It's rather more common to need to rename afile than to make a copy of it. The reason | discussed the hg copy command
before talking about renaming files is that Mercuria treats a rename in essentially the same way as a copy. Therefore,
knowing what Mercurial does when you copy afiletells you what to expect when you rename afile.

When you use the hg rename command, Mercurial makes a copy of each source file, then deletes it and marks the file
asremoved.

[$ hg renane a b

The hg status command shows the newly copied file as added, and the copied-from file as removed.

$ hg status
A b
R a

As with the results of a hg copy, we must use the - C option to hg status to see that the added file is really being tracked
by Mercurial as a copy of the original, now removed, file.

$ hg status -C
A b
a
a

py]

Aswith hg remove and hg copy, you can tell Mercurial about arename after the fact using the - - af t er option. In most
other respects, the behavior of the hg rename command, and the options it accepts, are similar to the hg copy command.

If you're familiar with the Unix command line, you'll be glad to know that hg rename command can be invoked as hg mv.

5.4.1. Renaming files and merging changes

Since Mercuria's rename isimplemented as copy-and-remove, the same propagation of changes happens when you merge
after arename as after a copy.

If | modify afile, and you rename it to a new name, and then we merge our respective changes, my modifications to the
file under its original name will be propagated into the file under its new name. (This is something you might expect to
“simply work,” but not all revision control systems actually do this.)

Whereas having changesfollow acopy isafeature where you can perhaps nod and say “yes, that might be useful,” it should

be clear that having them follow a rename is definitely important. Without this facility, it would simply be too easy for
changes to become orphaned when files are renamed.

5.4.2. Divergent renames and merging

Thecase of diverging names occurswhen two devel opersstart with afile—let'scall it f oo—intheir respectiverepositories.

$ hg clone orig anne

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved
$ hg clone orig bob

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved

Anne renames thefileto bar .

$ cd anne
$ hg renane foo bar
$ hg ci -m'Renane foo to bar

48

Mercurial in daily use

Meanwhile, Bob renamesit to quux. (Remember that hg mv isan aiasfor hg rename.)

$ cd ../bob
$ hg nv foo quux
$ hg ci -m' Rename foo to quux

I like to think of this as a conflict because each developer has expressed different intentions about what the file ought to
be named.

What do you think should happen when they merge their work? Mercurial's actual behavior isthat it always preserves both
names when it merges changesets that contain divergent renames.

See http://ww. sel enic.com nercurial /bts/issue455

$ cd ../orig

$ hg pull -u ../anne

pulling from../anne

sear ching for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files

1 files updated, O files nerged, 1 files renpved, O files unresol ved
$ hg pull ../bob

pulling from../bob

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg nerge' to nerge)

$ hg nerge

note: possible conflict - foo was renaned nultiple tinmes to
bar

quux

1 files updated, O files nerged, O files renpved, O files unresol ved
(branch nmerge, don't forget to conmt)

$Is

bar quux

Notice that while Mercurial warns about the divergent renames, it leavesit up to you to do something about the divergence
after the merge.

5.4.3. Convergent renames and merging

Another kind of rename conflict occurs when two people choose to rename different sour ce files to the same destination.
In this case, Mercurial runsits norma merge machinery, and lets you guide it to a suitable resol ution.

5.4.4. Other name-related corner cases

Mercurial has a longstanding bug in which it fails to handle a merge where one side has a file with a given name,
while another has a directory with the same name. Thisis documented as issue 29 [http://www.selenic.com/mercurial /bts/
issue29].

$ hg init issue29
$ cd i ssue29

$ echo a > a

$ hg ci -Ama
adding a

$ echo b > b

$ hg ci -Anb
adding b

$ hg up O

O files updated, O files merged, 1 files renoved, O files unresol ved
$ mkdir b

$ echo b > b/b

$ hg ci -Anmc
adding b/b

49

http://www.selenic.com/mercurial/bts/issue29
http://www.selenic.com/mercurial/bts/issue29
http://www.selenic.com/mercurial/bts/issue29

Mercurial in daily use

creat ed new head
$ hg merge
abort: |Is a directory: /tnp/issue29mhVTkZ/ i ssue29/b

5.5. Recovering from mistakes

Mercurial has some useful commands that will help you to recover from some common mistakes.

The hg revert command lets you undo changes that you have made to your working directory. For example, if you hg
add afile by accident, just run hg revert with the name of the file you added, and while the file won't be touched in any
way, it won't be tracked for adding by Mercuria any longer, either. You can also use hg revert to get rid of erroneous
changesto afile.

It ishelpful to remember that the hg revert command is useful for changes that you have not yet committed. Once you've
committed a change, if you decide it was a mistake, you can still do something about it, though your options may be more
limited.

For more information about the hg revert command, and details about how to deal with changes you have aready
committed, see Chapter 9, Finding and fixing mistakes.

5.6. Dealing with tricky merges

In a complicated or large project, it's not unusual for a merge of two changesets to result in some headaches. Suppose
there's a big source file that's been extensively edited by each side of a merge: thisis almost inevitably going to result in
conflicts, some of which can take a few tries to sort out.

Let's develop a simple case of this and see how to deal with it. Wel'll start off with a repository containing one file, and
cloneit twice.

$ hg init conflict

$ cd conflict

$ echo first > nyfile.txt

$ hg ci -A-mfirst

addi ng nyfile.txt

$ cd .

$ hg clone conflict left

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved
$ hg clone conflict right

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved

In one clone, we'll modify the file in one way.

$ cd left
$ echo left >> nyfile.txt
$ hg ci -mleft

In another, we'll modify the file differently.

$ cd ../right
$ echo right >> nyfile.txt
$ hg ci -mright

Next, we'll pull each set of changesinto our original repo.

$ cd ../conflict

$ hg pull -u ../left

pulling from../left

searchi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files

1 files updated, O files nerged, O files renpved, O files unresol ved

50

Mercurial in daily use

$ hg pull -u ../right

pulling from../right

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
not updating, since new heads added

(run 'hg heads' to see heads, 'hg nerge' to nerge)

We expect our repository to now contain two heads.

$ hg heads

changeset : 2:5322bledc6cO

t ag: tip

parent: 0: 4733500dab2e

user: Bryan O Sul | i van <bos@er penti ne. con
dat e: Mon Nov 01 23:57:52 2010 +0000
sunmary: right

changeset : 1: a9d5e5e60530

user: Bryan O Sul | i van <bos@er penti ne. con
dat e: Mon Nov 01 23:57:52 2010 +0000
sunmary: | eft

Normally, if we run hg merge at this point, it will drop us into a GUI that will let us manually resolve the conflicting
editstonyfi |l e. t xt . However, to simplify things for presentation here, we'd like the merge to fail immediately instead.
Here's one way we can do so.

|6 export HGVERGE=fal se |

We've told Mercuria's merge machinery to run the command false (which, as we desire, fails immediately) if it detects
amergethat it can't sort out automatically.

If we now fire up hg merge, it should grind to a halt and report afailure.

$ hg nerge

mer gi ng nyfile.txt

merging nyfile.txt failed

O files updated, O files nmerged, O files removed, 1 files unresolved

use 'hg resolve' to retry unresolved file nerges or 'hg update -C .' to abandon

Even if we don't notice that the merge failed, Mercuria will prevent us from accidentally committing the result of afailed
merge.

$ hg commt -m'Attenpt to conmit a failed nerge'
abort: unresolved nerge conflicts (see hg resolve)

When hg commit failsin this case, it suggests that we use the unfamiliar hg r esolve command. As usual, hg help resolve
will print a helpful synopsis.

5.6.1. File resolution states

When a merge occurs, most files will usually remain unmodified. For each file where Mercurial has to do something, it
tracks the state of thefile.

» A resolved file has been successfully merged, either automatically by Mercurial or manually with human intervention.
» Anunresolved file was not merged successfully, and needs more attention.

If Mercurial sees any file in the unresolved state after a merge, it considers the merge to have failed. Fortunately, we do
not need to restart the entire merge from scratch.

The--11ist or-1 optionto hg resolve prints out the state of each merged file.

|6 hg resolve -I

51

Mercurial in daily use

U nyfile. txt

In the output from hg resolve, aresolved file is marked with R, while an unresolved file is marked with U. If any filesare
listed with U, we know that an attempt to commit the results of the merge will fail.

5.6.2. Resolving a file merge

We have severa optionsto move afile from the unresolved into the resolved state. By far the most common isto rerun hg
resolve. If we pass the names of individual files or directories, it will retry the merges of any unresolved files present in
those locations. We can also passthe - - al | or - a option, which will retry the merges of all unresolved files.

Mercurial aso lets us modify the resolution state of afile directly. We can manually mark afile as resolved using the - -
mar k option, or as unresolved using the - - unmar k option. This allows us to clean up a particularly messy merge by
hand, and to keep track of our progress with each file aswe go.

5.7. More useful diffs

The default output of the hg diff command is backwards compatible with the regular diff command, but this has some
drawbacks.

Consider the case where we use hg rename to rename afile.

$ hg renane a b
$ hg diff
di ff -r 6f446a6993e5 a

- a/la Mon Nov 01 23:57:51 2010 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@»-1,1 +0,0 @@
-a
diff -r 6f446a6993e5 b

- /dev/null Thu Jan 01 00: 00: 00 1970 +0000
+++ b/b Mon Nov 01 23:57:51 2010 +0000
@»-0,0 +1,1 @@

+a

The output of hg diff above obscures the fact that we simply renamed afile. The hg diff command accepts an option, - -
gi t or- g, to useanewer diff format that displays such information in a more readable form.

$ hg diff -g

diff --git a/a b/b
renane froma
renane to b

This option a so helpswith acase that can otherwise be confusing: afile that appearsto be modified according to hg status,
but for which hg diff prints nothing. This situation can arise if we change the file's execute permissions.

$ chnod +x a
$ hg st

M a

$ hg diff

Thenormal diff command pays no attention to file permissions, which iswhy hg diff prints nothing by default. If we supply
it with the - g option, it tells us what really happened.

$ hg diff -g

diff --git a/a b/a
ol d node 100644
new node 100755

5.8. Which files to manage, and which to avoid

Revision control systems are generally best at managing text files that are written by humans, such as source code, where
thefilesdo not change much from onerevision to the next. Some centralized revision control systems can also deal tolerably
well with binary files, such as bitmap images.

52

Mercurial in daily use

For instance, agame development team will typically manage both its source code and all of itsbinary assets (e.g. geometry
data, textures, map layouts) in arevision control system.

Becauseit is usually impossible to merge two conflicting modificationsto abinary file, centralized systems often provide
afilelocking mechanism that allow a user to say “1 am the only person who can edit thisfile”.

Compared to a centralized system, a distributed revision control system changes some of the factors that guide decisions
over which files to manage and how.

For instance, a distributed revision control system cannot, by its nature, offer afile locking facility. There is thus no built-
in mechanism to prevent two people from making conflicting changes to a binary file. If you have a team where severa
people may be editing binary files frequently, it may not be agood ideato use Mercurial—or any other distributed revision
control system—to manage those files.

When storing modificationsto afile, Mercurial usually savesonly the differences between the previousand current versions
of thefile. For most text files, thisis extremely efficient. However, somefiles (particularly binary files) arelaid out in such
away that even asmall change to afile'slogical content resultsin many or most of the bytes inside the file changing. For
instance, compressed files are particularly susceptible to this. If the differences between each successive version of afile
are always large, Mercurial will not be able to store the file's revision history very efficiently. This can affect both local
storage needs and the amount of time it takes to clone arepository.

To get an idea of how this could affect you in practice, suppose you want to use Mercurial to manage an OpenOffice
document. OpenOffice stores documents on disk as compressed zip files. Edit even a single letter of your document in
OpenOffice, and almost every byte in the entire file will change when you save it. Now suppose that file is 2MB in size.
Because most of the file changes every time you save, Mercurial will have to store al 2MB of the file every time you
commit, even though from your perspective, perhaps only afew words are changing each time. A single frequently-edited
file that is not friendly to Mercuria's storage assumptions can easily have an outsized effect on the size of the repository.

Even worse, if both you and someone else edit the OpenOffice document you're working on, there is no useful way to
merge your work. In fact, there isn't even a good way to tell what the differences are between your respective changes.

There are thus afew clear recommendations about specific kinds of filesto be very careful with.

 Filesthat are very large and incompressible, e.g. ISO CD-ROM images, will by virtue of sheer size make clones over
anetwork very sow.

* Filesthat change alot from one revision to the next may be expensive to store if you edit them frequently, and conflicts
due to concurrent edits may be difficult to resolve.

5.9. Backups and mirroring

Since Mercurial maintains a complete copy of history in each clone, everyone who uses Mercuria to collaborate on a
project can potentially act as a source of backupsin the event of a catastrophe. If acentral repository becomes unavailable,
you can construct a replacement simply by cloning a copy of the repository from one contributor, and pulling any changes
they may not have seen from others.

It is simple to use Mercuria to perform off-site backups and remote mirrors. Set up a periodic job (e.g. via the cron
command) on a remote server to pull changes from your master repositories every hour. This will only be tricky in the
unlikely case that the number of master repositories you maintain changes frequently, in which case you'll need to do a
little scripting to refresh the list of repositories to back up.

If you perform traditional backups of your master repositories to tape or disk, and you want to back up arepository named
myr epo, use hg clone-U myrepo myrepo.bak to create aclone of nyr epo beforeyou start your backups. The- Uoption
doesn't check out a working directory after the clone completes, since that would be superfluous and make the backup
take longer.

If you then back up nmyr epo. bak instead of myr epo, you will be guaranteed to have a consistent snapshot of your
repository that won't be pushed to by an insomniac developer in mid-backup.

53

Chapter 6. Collaborating with other people

As a completely decentralised tool, Mercurial doesn't impose any policy on how people ought to work with each other.
However, if you're new to distributed revision contral, it helps to have some tools and examples in mind when you're
thinking about possible workflow models.

6.1. Mercurial's web interface

Mercurial has a powerful web interface that provides several useful capabilities.

For interactive use, the web interface lets you browse a single repository or a collection of repositories. Y ou can view the
history of arepository, examine each change (comments and diffs), and view the contents of each directory and file. You
can even get aview of history that gives agraphical view of the relationships between individual changes and merges.

Also for human consumption, the web interface provides Atom and RSS feeds of the changesin arepository. Thisletsyou
“subscribe’ to arepository using your favorite feed reader, and be automatically notified of activity in that repository as
soon as it happens. | find this capability much more convenient than the model of subscribing to a mailing list to which
notifications are sent, as it requires no additional configuration on the part of whoever is serving the repository.

The web interface also lets remote users clone a repository, pull changes from it, and (when the server is configured to
permit it) push changes back to it. Mercurial's HTTP tunneling protocol aggressively compresses data, so that it works
efficiently even over low-bandwidth network connections.

The easiest way to get started with the web interface is to use your web browser to visit an existing repository, such asthe
master Mercurial repository at http://www.selenic.com/repo/hg.

If you're interested in providing aweb interface to your own repositories, there are several good ways to do this.

The easiest and fastest way to get started in an informal environment isto use the hg ser ve command, which is best suited
to short-term “lightweight” serving. See Section 6.4, “Informal sharing with hg serve” below for details of how to use
this command.

For longer-lived repositories that you'd like to have permanently available, there are severa public hosting services
available. Some are free to open source projects, while others offer paid commercia hosting. An up-to-datelistisavailable
at http://www.sel enic.com/mercurial/wiki/index.cgi/Mercurial Hosting.

If you would prefer to host your own repositories, Mercuria has built-in support for several popular hosting technologies,
most notably CGI (Common Gateway Interface), and WSGI (Web Services Gateway Interface). See Section 6.6, “ Serving
over HTTP using CGI” for details of CGIl and WSGI configuration.

6.2. Collaboration models

With a suitably flexible tool, making decisions about workflow is much more of a socia engineering chalenge than a
technical one. Mercurial imposes few limitations on how you can structure the flow of work in a project, so it's up to you
and your group to set up and live with amodel that matches your own particular needs.

6.2.1. Factors to keep in mind

The most important aspect of any model that you must keep in mind is how well it matches the needs and capabilities of
the people who will be using it. This might seem self-evident; even so, you still can't afford to forget it for a moment.

| once put together a workflow model that seemed to make perfect sense to me, but that caused a considerable amount of
consternation and strife within my development team. In spite of my attempts to explain why we needed a complex set
of branches, and how changes ought to flow between them, a few team members revolted. Even though they were smart
people, they didn't want to pay attention to the constraints we were operating under, or face the consequences of those
constraints in the details of the model that | was advocating.

http://www.selenic.com/repo/hg
http://www.selenic.com/mercurial/wiki/index.cgi/MercurialHosting

Collaborating with other people

Don't sweep foreseeable social or technical problems under the rug. Whatever scheme you put into effect, you should plan
for mistakes and problem scenarios. Consider adding automated machinery to prevent, or quickly recover from, trouble
that you can anticipate. As an example, if you intend to have a branch with not-for-release changes in it, you'd do well to
think early about the possibility that someone might accidentally merge those changes into a release branch. You could
avoid this particular problem by writing a hook that prevents changes from being merged from an inappropriate branch.

6.2.2. Informal anarchy

| wouldn't suggest an “anything goes’ approach as something sustainable, but it'samodel that's easy to grasp, and it works
perfectly well in afew unusual situations.

As one example, many projects have a loose-knit group of collaborators who rarely physically meet each other. Some
groups like to overcome the isolation of working at a distance by organizing occasional “sprints’. In a sprint, a number of
people get together in asingle location (a company's conference room, a hotel meeting room, that kind of place) and spend
several days more or lesslocked in there, hacking intensely on a handful of projects.

A sprint or ahacking session in a coffee shop are the perfect places to use the hg serve command, since hg serve does not
require any fancy server infrastructure. Y ou can get started with hg serve in moments, by reading Section 6.4, “Informal
sharing with hg serve” below. Then simply tell the person next to you that you're running a server, send the URL to them
in an instant message, and you immediately have a quick-turnaround way to work together. They can type your URL into
their web browser and quickly review your changes; or they can pull a bugfix from you and verify it; or they can clone
abranch containing a new feature and try it out.

The charm, and the problem, with doing things in an ad hoc fashion like this is that only people who know about your
changes, and where they are, can see them. Such an informal approach ssimply doesn't scale beyond a handful people,
because each individual needs to know about n different repositoriesto pull from.

6.2.3. A single central repository

For smaller projects migrating from a centralised revision control tool, perhaps the easiest way to get started is to have
changes flow through asingle shared central repository. Thisisalso the most common “building block” for more ambitious
workflow schemes.

Contributors start by cloning a copy of this repository. They can pull changes from it whenever they need to, and some
(perhaps all) devel opers have permission to push a change back when they're ready for other people to seeit.

Under this model, it can still often make sense for people to pull changes directly from each other, without going through
the central repository. Consider a case in which | have a tentative bug fix, but | am worried that if | were to publish it to
the central repository, it might subsequently break everyone else's trees as they pull it. To reduce the potential for damage,
| can ask you to clone my repository into a temporary repository of your own and test it. This lets us put off publishing
the potentially unsafe change until it has had alittle testing.

If ateam is hosting its own repository in this kind of scenario, people will usually use the ssh protocol to securely push
changes to the central repository, as documented in Section 6.5, “Using the Secure Shell (ssh) protocol”. It's also usual
to publish aread-only copy of the repository over HTTP, asin Section 6.6, “ Serving over HTTP using CGI”. Publishing
over HTTP satisfies the needs of people who don't have push access, and those who want to use web browsers to browse
the repository's history.

6.2.4. A hosted central repository

A wonderful thing about public hosting services like Bitbucket [http://bitbucket.org/] is that not only do they handle the
fiddly server configuration details, such as user accounts, authentication, and secure wire protocols, they provide additional
infrastructure to make this model work well.

For instance, a well-engineered hosting service will let people clone their own copies of a repository with a single click.
Thislets people work in separate spaces and share their changes when they're ready.

In addition, a good hosting service will let people communicate with each other, for instance to say “there are changes
ready for you to review in thistree”.

55

http://bitbucket.org/
http://bitbucket.org/

Collaborating with other people

6.2.5. Working with multiple branches

Projects of any significant size naturally tend to make progress on severa fronts simultaneously. In the case of software,
it's common for a project to go through periodic official releases. A release might then go into “maintenance mode” for a
while after itsfirst publication; maintenance rel eases tend to contain only bug fixes, not new features. In parallel with these
maintenance releases, one or more future releases may be under devel opment. People normally use the word “branch” to
refer to one of these many dlightly different directions in which development is proceeding.

Mercurial isparticularly well suited to managing anumber of simultaneous, but not identical, branches. Each “ devel opment
direction” canliveinitsown central repository, and you can merge changes from oneto another as the need arises. Because
repositories are independent of each other, unstable changes in a development branch will never affect a stable branch
unless someone explicitly merges those changes into the stable branch.

Here's an example of how this can work in practice. Let's say you have one “main branch” on a central server.

$ hg init main

$ cd main

$ echo 'This is a boring feature.' > nyfile

$ hg coomit -A -m'W have reached an inportant ml estone!
adding nyfile

People clone it, make changes locally, test them, and push them back.

Once the main branch reaches a release milestone, you can use the hg tag command to give a permanent name to the
milestone revision.

$ hg tag v1.0
$ hg tip
changeset : 1: 5e3db31b5bb0
tag: tip
user : Bryan O Sul |l i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:57:47 2010 +0000
summary: Added tag v1.0 for changeset Oadb5af 24d746
$ hg tags
tip 1: 5e3db31b5bbh0
1.0 0: Oad5af 24d746

Let's say some ongoing development occurs on the main branch.

$ cd ../main

$ echo 'This is exciting and new' >> nyfile
$ hg commit -m'Add a new feature

$ cat myfile

This is a boring feature

This is exciting and new

Using the tag that was recorded at the milestone, people who clone that repository at any time in the future can use hg
update to get a copy of the working directory exactly as it was when that tagged revision was committed.

$ cd .

$ hg clone -U nain nmain-old

$ cd nmain-old

$ hg update v1.0

1 files updated, O files nerged, O files renpved, O files unresol ved
$ cat myfile

This is a boring feature

In addition, immediately after the main branch istagged, we can then clone the main branch on the server to anew “ stable”
branch, also on the server.

$ cd .

$ hg clone -rv1.0 main stable

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files

56

Collaborating with other people

updating to branch default
1 files updated, O files nerged, O files renpved, O files unresol ved

If we need to make a change to the stable branch, we can then clone that repository, make our changes, commit, and push
our changes back there.

$ hg clone stable stable-fix

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved
$ cd stable-fix

$ echo 'This is a fix to a boring feature.' > nyfile
$ hg coomit -m'Fix a bug'

$ hg push

pushing to /tnp/branchi ngu8YNr R/ st abl e

searchi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files

Because Mercurial repositories are independent, and Mercurial doesn't move changes around automatically, the stable and
main branches areisolated from each other. The changesthat we made on the main branch don't “leak” to the stable branch,
and vice versa.

Well often want all of our bugfixes on the stable branch to show up on the main branch, too. Rather than rewrite a bugfix
on the main branch, we can simply pull and merge changes from the stable to the main branch, and Mercuria will bring
those bugfixesin for us.

$ cd ../main

$ hg pull ../stable

pulling from../stable

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg nerge' to nerge)

$ hg nerge

merging nyfile

O files updated, 1 files nmerged, O files renmoved, O files unresol ved
(branch merge, don't forget to conmit)

$ hg commit -m'Bring in bugfix fromstable branch’

$ cat myfile

This is a fix to a boring feature

This is exciting and new

The main branch will still contain changes that are not on the stable branch, but it will also contain all of the bugfixes from
the stable branch. The stable branch remains unaffected by these changes, since changes are only flowing from the stable
to the main branch, and not the other way.

6.2.6. Feature branches

For larger projects, an effective way to manage changeis to break up ateam into smaller groups. Each group has a shared
branch of its own, cloned from asingle “master” branch used by the entire project. People working on an individual branch
aretypically quiteisolated from developments on other branches.

Figure6.1. Feature branches

57

Collaborating with other people

When aparticular feature is deemed to be in suitable shape, someone on that feature team pulls and merges from the master
branch into the feature branch, then pushes back up to the master branch.

6.2.7. The release train

Some projects are organized on a“train” basis: arelease is scheduled to happen every few months, and whatever features
are ready when the “train” isready to leave are alowed in.

Thismodel resemblesworking with feature branches. The difference isthat when afeature branch misses atrain, someone
on the feature team pulls and merges the changes that went out on that train release into the feature branch, and the team
continues its work on top of that release so that their feature can make the next release.

6.2.8. The Linux kernel model

Thedevelopment of the Linux kernel hasashallow hierarchical structure, surrounded by acloud of apparent chaos. Because
most Linux developersusegit, adistributed revision control tool with capabilitiessimilar to Mercurial, it'suseful to describe
the way work flows in that environment; if you like the ideas, the approach translates well acrosstools.

At the center of the community sits Linus Torvalds, the creator of Linux. He publishes a single source repository that is
considered the “authoritative” current tree by the entire developer community. Anyone can clone Linus's tree, but he is
very choosy about whose trees he pulls from.

Linus has a number of “trusted lieutenants’. As a general rule, he pulls whatever changes they publish, in most cases
without even reviewing those changes. Some of those lieutenants are generally agreed to be “ maintainers’, responsible for
specific subsystems within the kernel. If arandom kernel hacker wants to make a change to a subsystem that they want to
end up in Linus's tree, they must find out who the subsystem's maintainer is, and ask that maintainer to take their change.
If the maintainer reviews their changes and agrees to take them, they'll pass them along to Linusin due course.

Individual lieutenants have their own approachesto reviewing, accepting, and publishing changes; and for deciding whento
feed themto Linus. In addition, there are several well known branchesthat people usefor different purposes. For example, a
few people maintain “ stable” repositories of older versions of the kernel, to which they apply critical fixes as needed. Some
maintainers publish multiple trees. one for experimental changes; one for changes that they are about to feed upstream;
and so on. Othersjust publish asingle tree.

Thismodel has two notable features. Thefirst isthat it's “pull only”. Y ou have to ask, convince, or beg another devel oper
to take a change from you, because there are almost no trees to which more than one person can push, and there's no way
to push changes into a tree that someone else controls.

The second is that it's based on reputation and acclaim. If you're an unknown, Linus will probably ignore changes from
you without even responding. But a subsystem maintainer will probably review them, and will likely take them if they pass
their criteriafor suitability. The more “good” changes you contribute to a maintainer, the more likely they are to trust your
judgment and accept your changes. If you're well-known and maintain along-lived branch for something Linus hasn't yet
accepted, people with similar interests may pull your changes regularly to keep up with your work.

Reputation and acclaim don't necessarily cross subsystem or “people’ boundaries. If you're a respected but specialised
storage hacker, and you try to fix a networking bug, that change will receive alevel of scrutiny from a network maintainer
comparable to a change from a complete stranger.

To people who come from more orderly project backgrounds, the comparatively chaotic Linux kernel devel opment process
often seems completely insane. It's subject to the whims of individuals; people make sweeping changes whenever they
deem it appropriate; and the pace of development is astounding. And yet Linux isahighly successful, well-regarded piece
of software.

6.2.9. Pull-only versus shared-push collaboration

A perpetual source of heat in the open source community is whether a development model in which people only ever pull
changes from othersis “better than” one in which multiple people can push changes to a shared repository.

58

Collaborating with other people

Typically, the backers of the shared-push model use tools that actively enforce this approach. If you're using a centralised
revision control tool such as Subversion, there's no way to make a choice over which model you'll use: the tool gives you
shared-push, and if you want to do anything else, you'll have to roll your own approach on top (such as applying a patch
by hand).

A good distributed revision control tool will support both models. Y ou and your collaborators can then structure how you
work together based on your own needs and preferences, not on what contortions your tools force you into.

6.2.10. Where collaboration meets branch management

Once you and your team set up some shared repositories and start propagating changes back and forth between local and
shared repos, you begin to face arelated, but slightly different challenge: that of managing the multiple directionsin which
your team may be moving at once. Even though this subject isintimately related to how your team collaborates, it's dense
enough to merit treatment of its own, in Chapter 8, Managing releases and branchy devel opment.

6.3. The technical side of sharing

The remainder of this chapter is devoted to the question of sharing changes with your collaborators.

6.4. Informal sharing with hg serve

Mercurial's hg serve command is wonderfully suited to small, tight-knit, and fast-paced group environments. It also
provides a great way to get afeel for using Mercurial commands over a network.

Run hg serve inside a repository, and in under a second it will bring up a specialised HTTP server; this will accept
connections from any client, and serve up data for that repository until you terminate it. Anyone who knows the URL of
the server you just started, and can talk to your computer over the network, can then use aweb browser or Mercurial to read
data from that repository. A URL for a hg serve instance running on alaptop is likely to look something like ht t p: //

my- | apt op. | ocal : 8000/ .

The hg serve command is not a general-purpose web server. It can do only two things:

 Allow people to browse the history of the repository it's serving, from their normal web browsers.

» Speak Mercuria's wire protocol, so that people can hg clone or hg pull changes from that repository.

In particular, hg serve won't allow remote users to modify your repository. It's intended for read-only use.

If you're getting started with Mercurial, there's nothing to prevent you from using hg serve to serve up arepository on your

own computer, then use commands like hg clone, hg incoming, and so on to talk to that server as if the repository was
hosted remotely. This can help you to quickly get acquainted with using commands on network-hosted repositories.

6.4.1. A few things to keep in mind

Because it provides unauthenticated read access to all clients, you should only use hg serve in an environment where you
either don't care, or have complete control over, who can access your network and pull data from your repository.

The hg serve command knows nothing about any firewall software you might have installed on your system or network. It
cannot detect or control your firewall software. If other people are unableto talk to arunning hg ser ve instance, the second
thing you should do (after you make sure that they're using the correct URL) is check your firewall configuration.

By default, hg serve listens for incoming connections on port 8000. If another process is already listening on the port you
want to use, you can specify adifferent port to listen on using the - p option.

Normally, when hg serve starts, it prints no output, which can be a bit unnerving. If you'd like to confirm that it isindeed
running correctly, and find out what URL you should send to your collaborators, start it with the - v option.

59

Collaborating with other people

6.5. Using the Secure Shell (ssh) protocol

You can pull and push changes securely over a network connection using the Secure Shell (ssh) protocol. To use this
successfully, you may have to do alittle bit of configuration on the client or server sides.

If you're not familiar with ssh, it's the name of both a command and a network protocol that let you securely communicate
with another computer. To useit with Mercurial, you'll be setting up one or more user accounts on a server so that remote
users can log in and execute commands.

(If you are familiar with ssh, you'll probably find some of the material that follows to be elementary in nature.)

6.5.1. How to read and write ssh URLSs

An ssh URL tendsto look like this:

issh: //bos@g. ser penti ne. com 22/ hg/ hghook

1. The“ssh:/ /" part tellsMercurial to use the ssh protocol.

2. The“bos @ component indicateswhat usernameto log into the server as. Y ou can leavethis out if the remote username
isthe same as your local username.

3. The“hg. ser penti ne. coni givesthe hosthame of the server to log into.

4. The“:22" identifies the port number to connect to the server on. The default port is 22, so you only need to specify a
colon and port number if you're not using port 22.

5. The remainder of the URL isthelocal path to the repository on the server.

There'splenty of scopefor confusion with the path component of ssh URL s, asthereisno standard way for toolsto interpret
it. Some programs behave differently than otherswhen dealing with these paths. Thisisn't anideal situation, but it'sunlikely
to change. Please read the following paragraphs carefully.

Mercurial treats the path to arepository on the server as relative to the remote user's home directory. For example, if user
f 00 on the server has a home directory of / horre/ f 00, then an ssh URL that contains a path component of bar really
refersto the directory / hone/ f oo/ bar .

If you want to specify a path relative to another user's home directory, you can use a path that starts with atilde character
followed by the user's name (let's call them ot her user), likethis.

lssh: //server/~otheruser/hg/repo |

And if you really want to specify an absolute path on the server, begin the path component with two slashes, asin this
example.

lssh: //server//absol ute/path |

6.5.2. Finding an ssh client for your system

Almost every Unix-like system comes with OpenSSH preinstalled. If you're using such a system, runwhi ch ssh tofind
out if the ssh command is installed (it's usually in / usr/ bi n). In the unlikely event that it isn't present, take a look at
your system documentation to figure out how to install it.

On Windows, the TortoiseHg package is bundled with a version of Simon Tatham's excellent plink command, and you
should not need to do any further configuration.

6.5.3. Generating a key pair

To avoid the need to repetitively type a password every time you need to use your ssh client, | recommend generating
akey pair.

60

Collaborating with other people

: Key pairsare not mandatory

Mercurial knows nothing about ssh authentication or key pairs. You can, if you like, safely ignore this section
and the one that follows until you grow tired of repeatedly typing ssh passwords.

* On aUnix-like system, the ssh-keygen command will do the trick.

On Windows, if you're using TortoiseHg, you may need to download a command named puttygen from the PUTTY
web site [http://www.chiark.greenend.org.uk/~sgtatham/putty] to generate a key pair. See the puttygen documentation
[http://the.earth.li/~sgtatham/putty/0.60/html doc/Chapter8.html#pubkey-puttygen] for details of how use the command.

When you generate akey pair, it's usually highly advisable to protect it with a passphrase. (The only time that you might
not want to do thisis when you're using the ssh protocol for automated tasks on a secure network.)

Simply generating a key pair isn't enough, however. You'll need to add the public key to the set of authorised keys for
whatever user you're logging in remotely as. For servers using OpenSSH (the vast magjority), this will mean adding the
public key to alistin afilecaled aut hori zed_keys intheir . ssh directory.

On aUnix-like system, your public key will havea. pub extension. If you're using puttygen on Windows, you can savethe
public key to afile of your choosing, or pasteit fromthewindow it'sdisplayedin straightintotheaut hor i zed_keys file.

6.5.4. Using an authentication agent

An authentication agent is a daemon that stores passphrases in memory (so it will forget passphrases if you log out and
log back in again). An ssh client will notice if it's running, and query it for a passphrase. If there's no authentication agent
running, or the agent doesn't store the necessary passphrase, you'll have to type your passphrase every time Mercurial tries
to communicate with a server on your behalf (e.g. whenever you pull or push changes).

The downside of storing passphrases in an agent is that it's possible for a well-prepared attacker to recover the plain text
of your passphrases, in some cases even if your system has been power-cycled. Y ou should make your own judgment as
to whether thisis an acceptable risk. It certainly saves alot of repeated typing.

« On Unix-like systems, the agent is called ssh-agent, and it's often run automatically for you when you log in. Youll
need to use the ssh-add command to add passphrases to the agent's store.

* On Windows, if you're using TortoiseHg, the pageant command acts as the agent. As with puttygen, you'll need
to download pageant [http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html] from the PUTTY web
site and read its documentation [http://the.earth.li/~sgtatham/putty/0.60/html doc/Chapter9.html#pageant]. The pageant
command adds an icon to your system tray that will let you manage stored passphrases.

6.5.5. Configuring the server side properly

Because ssh can be fiddly to set up if you're new to it, a variety of things can go wrong. Add Mercurial on top, and there's
plenty more scope for head-scratching. Most of these potential problems occur on the server side, not the client side. The
good news is that once you've gotten a configuration working, it will usually continue to work indefinitely.

Before you try using Mercurial to talk to an ssh server, it's best to make sure that you can use the normal ssh or putty
command to talk to the server first. If you run into problems with using these commands directly, Mercuria surely won't
work. Worse, it will obscure the underlying problem. Any time you want to debug ssh-related Mercurial problems, you
should drop back to making sure that plain ssh client commands work first, before you worry about whether there's a
problem with Mercurial.

The first thing to be sure of on the server side is that you can actualy log in from another machine at all. If you can't
use ssh or putty to log in, the error message you get may give you a few hints as to what's wrong. The most common
problems are as follows.

* If you get a“ connection refused” error, either thereisn't an SSH daemon running on the server at al, or it'sinaccessible
due to firewall configuration.

61

http://www.chiark.greenend.org.uk/~sgtatham/putty
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey-puttygen
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey-puttygen
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter9.html#pageant
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter9.html#pageant

Collaborating with other people

* If you get a “no route to host” error, you either have an incorrect address for the server or a seriously locked down
firewall that won't admit its existence at all.

« If you get a“permission denied” error, you may have mistyped the username on the server, or you could have mistyped
your key's passphrase or the remote user's password.

In summary, if you're having trouble talking to the server's ssh daemon, first make sure that oneisrunning at all. On many
systemsit will beinstalled, but disabled, by default. Once you're done with this step, you should then check that the server's
firewall is configured to allow incoming connections on the port the ssh daemon is listening on (usually 22). Don't worry
about more exotic possihilities for misconfiguration until you've checked these two first.

If you're using an authentication agent on the client side to store passphrases for your keys, you ought to be able to log
into the server without being prompted for a passphrase or a password. If you're prompted for a passphrase, there are a
few possible culprits.

 You might have forgotten to use ssh-add or pageant to store the passphrase.
* You might have stored the passphrase for the wrong key.
If you're being prompted for the remote user's password, there are another few possible problems to check.

* Either the user's home directory or their . ssh directory might have excessively liberal permissions. Asaresult, the ssh
daemon will not trust or read their aut hor i zed_keys file. For example, a group-writable home or . ssh directory
will often cause this symptom.

* Theuser'saut hori zed_keys file may have a problem. If anyone other than the user owns or can write to that file,
the ssh daemon will not trust or read it.

In the ideal world, you should be able to run the following command successfully, and it should print exactly one line of
output, the current date and time.

[ssh nyserver date

If, on your server, you havelogin scriptsthat print banners or other junk even when running non-interactive commandslike
this, you should fix them before you continue, so that they only print output if they're run interactively. Otherwise these
banners will at least clutter up Mercurial's output. Worse, they could potentially cause problems with running Mercurial
commands remotely. Mercuria tries to detect and ignore banners in non-interactive ssh sessions, but it is not foolproof.
(If you're editing your login scripts on your server, the usual way to see if alogin script is running in an interactive shell
isto check the return code from the commandtty -s.)

Once you've verified that plain old ssh is working with your server, the next step is to ensure that Mercurial runs on the
server. The following command should run successfully:

lssh nyserver hg version

If you see an error message instead of normal hg version output, thisis usually because you haven't installed Mercurial to
[usr/ bi n. Don't worry if thisisthe case; you don't need to do that. But you should check for afew possible problems.

» IsMercuria really installed on the server at al? | know this sounds trivial, but it's worth checking!
» Maybe your shell's search path (usually set viathe PATH environment variable) is simply misconfigured.

» Perhapsyour PATHenvironment variableisonly being set to point to thelocation of the hg executableif thelogin session
isinteractive. This can happen if you're setting the path in the wrong shell login script. See your shell's documentation
for details.

e The PYTHONPATH environment variable may need to contain the path to the Mercurial Python modules. It might not
be set at al; it could be incorrect; or it may be set only if the login isinteractive.

If you can run hg ver sion over an ssh connection, well done! Y ou've got the server and client sorted out. Y ou should now be
ableto use Mercurial to access repositories hosted by that username on that server. If you run into problemswith Mercurial
and ssh at this point, try using the - - debug option to get a clearer picture of what's going on.

62

Collaborating with other people

6.5.6. Using compression with ssh

Mercurial does not compress data when it uses the ssh protocol, because the ssh protocol can transparently compress data.
However, the default behavior of ssh clientsis not to request compression.

Over any network other than afast LAN (even awireless network), using compression is likely to significantly speed up
Mercurial's network operations. For example, over a WAN, someone measured compression as reducing the amount of
time required to clone a particularly large repository from 51 minutesto 17 minutes.

Both ssh and plink accept a - C option which turns on compression. You can easily edit your ~/ . hgr ¢ to enable
compression for al of Mercurial's uses of the ssh protocol. Here is how to do so for regular ssh on Unix-like systems,
for example.

[ui]
ssh = ssh -C

If you use ssh on a Unix-like system, you can configure it to always use compression when talking to your server. To do
this, edit your . ssh/ conf i g file (which may not yet exist), as follows.

Host hg
Conpr essi on yes
Host Nane hg. exanpl e. com

This defines a hostname alias, hg. When you use that hostname on the ssh command line or in aMercuria ssh-protocol
URL, it will cause ssh to connect to hg. exanpl e. comand use compression. This givesyou both a shorter name to type
and compression, each of whichisagood thing inits own right.

6.6. Serving over HTTP using CGl

The simplest way to host one or more repositoriesin a permanent way is to use aweb server and Mercurial's CGI support.

Depending on how ambitious you are, configuring Mercurial's CGI interface can take anything from a few moments to
several hours.

We'll begin with the simplest of examples, and work our way towards a more complex configuration. Even for the most
basic case, you're amost certainly going to need to read and modify your web server's configuration.

High pain tolerance required

Configuring a web server is a complex, fiddly, and highly system-dependent activity. | can't possibly give
you instructions that will cover anything like all of the cases you will encounter. Please use your discretion
and judgment in following the sections below. Be prepared to make plenty of mistakes, and to spend a lot
of time reading your server's error logs.

If you don't have a strong stomach for tweaking configurations over and over, or a compelling need to host
your own services, you might want to try one of the public hosting services that | mentioned earlier.

6.6.1. Web server configuration checklist

Before you continue, do take afew moments to check a few aspects of your system's setup.

1. Do you have aweb server installed at all? Mac OS X and some Linux distributions ship with Apache, but many other
systems may not have aweb server installed.

2. If you have aweb server installed, isit actually running? On most systems, even if one is present, it will be disabled
by default.

3. Isyour server configured to allow you to run CGI programs in the directory where you plan to do so? Most servers
default to explicitly disabling the ability to run CGI programs.

63

Collaborating with other people

If you don't have a web server installed, and don't have substantial experience configuring Apache, you should consider
using the | i ght t pd web server instead of Apache. Apache has a well-deserved reputation for baroque and confusing
configuration. Whilel i ght t pd isless capable in some ways than Apache, most of these capabilities are not relevant to
serving Mercurial repositories. And | i ght t pd isundeniably much easier to get started with than Apache.

6.6.2. Basic CGI configuration

On Unix-like systems, it's common for users to have a subdirectory named something like publ i ¢_ht m in their home
directory, from which they can serve up web pages. A file named f oo in this directory will be accessible at a URL of the
formht t p: / / www. exanpl e. conf user nane/ f 0o.

To get started, find the hgweb. cgi script that should be present in your Mercuria installation. If you can't quickly find
alocal copy on your system, simply download one from the master Mercurial repository at http://www.selenic.com/repo/
hg/raw-file/tip/hgweb.cgi.

You'll need to copy this script into your publ i ¢_ht ml directory, and ensure that it's executable.

cp .../hgweb.cgi ~/public_htm
chnmod 755 ~/ public_htm /hgweb. cgi

The 755 argument to chmod is a little more general than just making the script executable: it ensures that the script
is executable by anyone, and that “group” and “other” write permissions are not set. If you were to leave those write
permissions enabled, Apache's suexec subsystem would likely refuse to execute the script. In fact, suexec asoinsists
that the directory in which the script resides must not be writable by others.

lchnod 755 ~/ publ i c_ht i |

6.6.2.1. What could possibly go wrong?

Once you've copied the CGI script into place, go into aweb browser, and try to openthe URL ht t p: / / myhost name/

~nyuser/ hgweb. cgi , but brace yourself for instant failure. There's ahigh probability that trying to visit thisURL will
fail, and there are many possible reasons for this. In fact, you're likely to stumble over almost every one of the possible
errors below, so please read carefully. The following are all of the problems | ran into on a system running Fedora 7, with
afreshinstallation of Apache, and a user account that | created specially to perform this exercise.

Your web server may have per-user directories disabled. If you're using Apache, search your config file for aUser Di r
directive. If there's none present, per-user directories will be disabled. If one exists, but itsvalueisdi sabl ed, then per-
user directorieswill be disabled. Otherwise, the string after User Di r givesthe name of the subdirectory that Apache will
look in under your home directory, for example publ i c_ht ni .

Your file access permissions may be too restrictive. The web server must be able to traverse your home directory and
directories under your publ i ¢_ht m directory, and read files under the latter too. Here's a quick recipe to help you to
make your permissions more appropriate.

chnod 755 ~
find ~/public_htm -type d -print0O | xargs -0Or chnod 755
find ~/public_htm -type f -printO | xargs -Or chnod 644

The other possibility with permissionsisthat you might get a completely empty window when you try to load the script. In
this casg, it's likely that your access permissions are too permissive. Apache's suexec subsystem won't execute a script
that's group- or world-writable, for example.

Y our web server may be configured to disallow execution of CGI programsin your per-user web directory. Here's Apache's
default per-user configuration from my Fedora system.

<Di rectory /home/*/public_htm >
Al l owOverride Filelnfo AuthConfig Limt
Options MiltiViews |ndexes SynlinkslfOanerMatch | ncl udesNoExec
<Limt GET POST OPTI ONS>
Order al |l ow, deny
Allow fromall
</Limt>
<Li m t Except GET POST OPTI ONS>
Order deny, al |l ow Deny from al

http://www.selenic.com/repo/hg/raw-file/tip/hgweb.cgi
http://www.selenic.com/repo/hg/raw-file/tip/hgweb.cgi

Collaborating with other people

</ Li m t Except >
</Directory>

If you find a similar-looking Di r ect ory group in your Apache configuration, the directive to look at inside it is
Opti ons. Add ExecCG tothe end of thislistif it's missing, and restart the web server.

If you find that Apache serves you the text of the CGI script instead of executing it, you may need to either uncomment
(if already present) or add a directive like this.

[AddHandl er cgi -script .cgi |

The next possibility is that you might be served with a colourful Python backtrace claiming that it can't import a
mer cur i al -related module. Thisisactually progress! The server isnow capable of executing your CGlI script. Thiserror
isonly likely to occur if you're running aprivateinstallation of Mercurial, instead of asystem-wide version. Remember that
the web server runs the CGI program without any of the environment variables that you take for granted in an interactive
session. If thiserror happensto you, edit your copy of hgweb. cgi and follow the directionsinsideit to correctly set your
PYTHONPATH environment variable.

Finally, you are certain to be served with another colourful Python backtrace: this one will complain that it can't find
/ pat h/t o/ r eposi t ory. Edit your hgweb. cgi script and replace the / pat h/ t o/ r eposi t ory string with the
complete path to the repository you want to serve up.

At thispoint, when you try to reload the page, you should be presented with anice HTML view of your repository's history.
Whew!

6.6.2.2. Configuring lighttpd

To be exhaustive in my experiments, | tried configuring theincreasingly popular | i ght t pd web server to serve the same
repository as | described with Apache above. | had already overcome all of the problems | outlined with Apache, many
of which are not server-specific. As aresult, | was fairly sure that my file and directory permissions were good, and that
my hgweb. cgi script was properly edited.

Once | had Apache running, getting | i ght t pd to serve the repository was a snap (in other words, even if you're trying
tousel i ght t pd, you should read the Apache section). | first had to edit the nbd_access section of its config file to
enablenod_cgi and nod_user di r, both of which were disabled by default on my system. | then added a few linesto
the end of the config file, to configure these modules.

userdir.path = "public_htm"
cgi.assign = (".cgi" =>"")

With thisdone, | i ght t pd ran immediately for me. If | had configured | i ght t pd before Apache, I'd ailmost certainly
have run into many of the same system-level configuration problems as | did with Apache. However, | found | i ght t pd
to be noticeably easier to configure than Apache, even though I've used Apache for over a decade, and this was my first
exposuretol i ght t pd.

6.6.3. Sharing multiple repositories with one CGI script

Thehgweb. cgi script only lets you publish a single repository, which is an annoying restriction. If you want to publish
more than one without wracking yourself with multiple copies of the same script, each with different names, a better choice
isto usethe hgwebdi r. cgi script.

The procedure to configure hgwebdi r . cgi isonly alittle more involved than for hgweb. cgi . First, you must obtain
acopy of the script. If you don't have one handy, you can download a copy from the master Mercurial repository at http://
www.sel enic.com/repo/hg/raw-file/tip/hgwebdir.cgi.

You'll need to copy this script into your publ i ¢_ht m directory, and ensure that it's executable.

cp .../hgwebdir.cgi ~/public_htmn
chnmod 755 ~/public_htm ~/public_htm/hgwebdir. cgi

With basic configuration out of the way, try to visit htt p: // myhost name/ ~nmyuser / hgwebdi r. cgi in your
browser. It should display an empty list of repositories. If you get a blank window or error message, try walking through
thelist of potential problemsin Section 6.6.2.1, “What could possibly go wrong?”.

65

http://www.selenic.com/repo/hg/raw-file/tip/hgwebdir.cgi
http://www.selenic.com/repo/hg/raw-file/tip/hgwebdir.cgi

Collaborating with other people

The hgwebdi r. cgi script relies on an external configuration file. By default, it searches for a file named
hgweb. confi g in the same directory asitself. You'll need to create thisfile, and make it world-readable. The format of
thefileissimilar to aWindows “ini” file, as understood by Python's Conf i gPar ser [web:configparser] module.

The easiest way to configure hgwebdi r. cgi iswith asection named col | ect i ons. Thiswill automatically publish
every repository under the directories you name. The section should look like this:

[col I ections]
nmy/ root = /ny/root

Mercurial interprets this by looking at the directory name on the right hand side of the “=" sign; finding repositoriesin
that directory hierarchy; and using the text on the left to strip off matching text from the names it will actually list in the
web interface. The remaining component of a path after this stripping has occurred is called a“virtual path”.

Given the example above, if we have arepository whose local pathis/ my/ r oot / t hi s/ r epo, the CGI script will strip
theleading/ my/ r oot from the name, and publish the repository with avirtual path of t hi s/ r epo. If the base URL for
our CGlI scriptishtt p: // nyhost nane/ ~myuser / hgwebdi r. cgi , the complete URL for that repository will be
htt p: // nyhost nane/ ~myuser / hgwebdi r. cgi / t hi s/ r epo.

If wereplace/ my/ r oot on the left hand side of this example with / my, then hgwebdi r . cgi will only strip off / my
from the repository name, and will give usavirtua path of r oot / t hi s/ r epo instead of t hi s/ r epo.

Thehgwebdi r. cgi scriptwill recursively search each directory listedinthecol | ect i ons section of itsconfiguration
file, but it will not recurse into the repositoriesit finds.

Thecol | ect i ons mechanism makesit easy to publish many repositoriesin a“fire and forget” manner. Y ou only need
to set up the CGlI script and configuration file one time. Afterwards, you can publish or unpublish arepository at any time
by ssimply moving it into, or out of, the directory hierarchy in which you've configured hgwebdi r . cgi to look.

6.6.3.1. Explicitly specifying which repositories to publish

In addition to the col | ecti ons mechanism, the hgwebdi r. cgi script allows you to publish a specific list of
repositories. To do so, create apat hs section, with contents of the following form.

[pat hs]
repol = /ny/path/to/ sone/repo
repo2 = /sone/ path/to/anot her

In this case, the virtual path (the component that will appear in aURL) is on the left hand side of each definition, while the
path to the repository is on the right. Notice that there does not need to be any relationship between the virtual path you
choose and the location of arepository in your filesystem.

If you wish, you can use both thecol | ect i ons and pat hs mechanisms simultaneously in asingle configuration file.
Bewar e duplicate virtual paths

If several repositories have the same virtual path, hgwebdi r. cgi will not report an error. Instead, it will
behave unpredictably.

6.6.4. Downloading source archives

Mercurial'swebinterfacelets usersdownload an archive of any revision. Thisarchivewill contain asnapshot of theworking
directory as of that revision, but it will not contain a copy of the repository data.

By default, this feature is not enabled. To enable it, you'll need to add an al | ow_ar chi ve item to the web section of
your ~/ . hgr c; see below for details.

6.6.5. Web configuration options

Mercurial's web interfaces (the hg serve command, and the hgweb. cgi and hgwebdi r . cgi scripts) have anumber of
configuration options that you can set. These belong in a section named web.

66

Collaborating with other people

» al | ow_ar chi ve: Determines which (if any) archive download mechanisms Mercuria supports. If you enable this
feature, users of the web interface will be able to download an archive of whatever revision of a repository they are
viewing. To enable the archive feature, thisitem must take the form of a sequence of words drawn from the list below.

e bz2: A tar archive, compressed using bzi p2 compression. This has the best compression ratio, but uses the most
CPU time on the server.

e gz: A tar archive, compressed using gzi p compression.

e zi p: A zip archive, compressed using LZW compression. Thisformat has the worst compression ratio, but is widely
used in the Windows world.

If you provide an empty list, or don't have an al | ow_ar chi ve entry at al, this feature will be disabled. Here is an
example of how to enable al three supported formats.

[web]
al | ow_archive = bz2 gz zip

« al | owpul | : Boolean. Determineswhether theweb interface allows remote usersto hg pull and hg clonethisrepository
over HTTP. If setto no or f al se, only the “human-oriented” portion of the web interfaceis available.

e cont act : String. A free-form (but preferably brief) string identifying the person or group in charge of the repository.
This often contains the name and email address of a person or mailing list. It often makes sense to place this entry in
arepository'sown . hg/ hgr c file, but it can make senseto usein aglobal ~/ . hgr c if every repository has asingle
maintainer.

» maxchanges: Integer. The default maximum number of changesets to display in asingle page of output.
o maxfil es: Integer. The default maximum number of modified filesto display in a single page of output.

» stri pes: Integer. If the web interface displays alternating “stripes’ to make it easier to visually align rows when you
arelooking at atable, this number controls the number of rowsin each stripe.

e styl e: Controlsthe template Mercurial usesto display the web interface. Mercurial ships with several web templates.
e coal ismonochromatic.
e gi t web emulatesthe visua style of git'sweb interface.
e nonobl ue usessolid blues and greys.
e paper isthedefault.
e spart an wasthe default for along time.

Y ou can also specify a custom template of your own; see Chapter 11, Customizing the output of Mercurial for details.
Here, you can see how to enablethe gi t web style.

[web]
style = gitweb

e t enpl at es: Path. The directory in which to search for template files. By default, Mercuria searchesin the directory
inwhich it was installed.

If you areusing hgwebdi r . cgi , you can place afew configuration itemsin aweb section of thehgweb. conf i g file
instead of a~/ . hgr c file, for convenience. Theseitemsarenot d and st yl e.

6.6.5.1. Options specific to an individual repository

A few web configuration items ought to be placed in a repository's local . hg/ hgr ¢, rather than a user's or global
~/ . hgrc.

e descri pti on: String. A free-form (but preferably brief) string that describesthe contents or purpose of the repository.

67

Collaborating with other people

» name: String. The name to use for the repository in the web interface. This overrides the default name, which is the
last component of the repository's path.

6.6.5.2. Options specific to the hg serve command
Some of theitemsin theweb section of a~/ . hgr ¢ file are only for use with the hg serve command.

» accessl og: Path. The name of afile into which to write an access log. By default, the hg serve command writes
this information to standard output, not to a file. Log entries are written in the standard “combined” file format used
by almost all web servers.

» addr ess: String. The local address on which the server should listen for incoming connections. By default, the server
listens on all addresses.

« errorl og: Path. The name of afile into which to write an error log. By default, the hg serve command writes this
information to standard error, not to afile.

* i pv6: Boolean. Whether to use the IPv6 protocol. By default, 1Pv6 is not used.

* port : Integer. The TCP port number on which the server should listen. The default port number used is 8000.

6.6.5.3. Choosing the right ~/ . hgr c file to add web items to

It isimportant to remember that aweb server like Apacheor | i ght t pd will run under auser ID that is different to yours.
CGil scriptsrun by your server, such ashgweb. cgi , will usually also run under that user ID.

If you add web itemsto your own personal ~/ . hgr c file, CGI scriptswon't read that ~/ . hgr c file. Those settings will
thus only affect the behavior of the hg serve command when you run it. To cause CGI scripts to see your settings, either
create a~/ . hgr c filein the home directory of the user ID that runs your web server, or add those settings to a system-
wide hgr c file.

6.7. System-wide configuration

On Unix-like systems shared by multiple users (such as a server to which people publish changes), it often makes sense to
set up some global default behaviors, such aswhat theme to use in web interfaces.

If afilenamed/ et c/ mer curi al / hgr ¢ exists, Mercurial will read it at startup time and apply any configuration settings
itfindsinthat file. It will alsolook for filesendingina. r ¢ extensioninadirectory named/ et ¢/ mer curi al / hgrc. d,
and apply any configuration settings it finds in each of those files.

6.7.1. Making Mercurial more trusting

One situation in which a global hgr ¢ can be useful is if users are pulling changes owned by other users. By defaullt,
Mercurial will not trust most of the configuration itemsina. hg/ hgr c fileinside arepository that is owned by a different
user. If we clone or pull changes from such a repository, Mercurial will print awarning stating that it does not trust their
. hg/ hgrec.

If everyonein aparticular Unix group is on the same team and should trust each other's configuration settings, or we want
to trust particular users, we can override Mercurial's skeptical defaults by creating a system-wide hgr ¢ file such as the
following:

Save this as e.g. /etc/nercurial/hgrc.d/trust.rc

[trusted]

Trust all entries in any hgrc file owned by the "editors" or
"ww« data" groups

groups = editors, ww«data

Trust entries in hgrc files owned by the follow ng users
users = apache, bobo

68

Chapter 7. File names and pattern
matching

Mercurial provides mechanisms that let you work with file names in a consistent and expressive way.

7.1. Simple file naming

Mercurial uses a unified piece of machinery “under the hood” to handle file names. Every command behaves uniformly
with respect to file names. The way in which commands work with file namesis as follows.

If you explicitly name real files on the command line, Mercurial works with exactly those files, as you would expect.

|6 hg add COPYI NG README exanpl es/ si npl e. py

When you provide a directory name, Mercurial will interpret this as “operate on every file in this directory and its
subdirectories’. Mercurial traverses the files and subdirectoriesin a directory in aphabetical order. When it encounters a
subdirectory, it will traverse that subdirectory before continuing with the current directory.

hg status src
src/ mai n. py

src/wat cher/_wat cher.c
src/ wat cher/wat cher. py
src/ xyzzy. txt

7.2. Running commands without any file names

Mercurial's commands that work with file names have useful default behaviors when you invoke them without providing
any file names or patterns. What kind of behavior you should expect depends on what the command does. Here are afew
rules of thumb you can use to predict what acommand is likely to do if you don't give it any names to work with.

ESIESEEN RN R

» Most commands will operate on the entire working directory. Thisis what the hg add command does, for example.

« If the command has effects that are difficult or impossible to reverse, it will force you to explicitly provide at least one
name or pattern (see below). This protects you from accidentally deleting files by running hg remove with no arguments,
for example.

It'seasy to work around these default behaviorsif they don't suit you. If acommand normally operates on thewholeworking

[T 1]

directory, you can invoke it on just the current directory and its subdirectories by giving it the name . ”.

$ cd src

$ hg add -n

adding ../ MANI FEST.in
addi ng ../ exanpl es/ performant. py
addi ng ../setup.py

addi ng mai n. py

addi ng wat cher/_wat cher.c
addi ng wat cher/wat cher. py
addi ng xyzzy.txt

$ hg add -n

addi ng mai n. py

addi ng wat cher/_wat cher.c
addi ng wat cher/wat cher. py
addi ng xyzzy.txt

Along the samelines, some commands normally print file namesrelativeto theroot of therepository, evenif you'reinvoking
them from a subdirectory. Such acommand will print file names relative to your subdirectory if you giveit explicit names.
Here, we're going to run hg status from a subdirectory, and get it to operate on the entire working directory while printing
file names relative to our subdirectory, by passing it the output of the hg root command.

$ hg status
COPYI NG

READVE

69

File names and pattern matching

A exanpl es/ si npl e. py

? MANI FEST. in

? exanpl es/ performant. py
? setup. py

? src/ main. py

? src/watcher/_watcher.c
? src/wat cher/wat cher. py
? src/xyzzy.txt

$ hg status “hg root"’

A ../ COPYI NG

A ../ READVE

A ../ exanpl es/sinpl e. py
? ../ MANIFEST.in

? ../ exanpl es/ performant. py
? ../setup.py

? main. py

? wat cher/ _wat cher.c

? wat cher/wat cher. py

? Xyzzy.txt

7.3. Telling you what's going on

The hg add example in the preceding section illustrates something else that's helpful about Mercurial commands. If a
command operates on afile that you didn't name explicitly on the command line, it will usually print the name of thefile,
so that you will not be surprised what's going on.

The principle here is of least surprise. If you've exactly named afile on the command line, there's no point in repeating
it back at you. If Mercurial is acting on afile implicitly, e.g. because you provided no names, or a directory, or a pattern
(see below), it is safest to tell you what files it's operating on.

For commands that behave this way, you can silence them using the - g option. Y ou can also get them to print the name
of every file, even those you've named explicitly, using the - v option.

7.4. Using patterns to identify files

In addition to working with file and directory names, Mercuria lets you use patter nsto identify files. Mercurial's pattern
handling is expressive.

On Unix-like systems (Linux, MacOS, etc.), the job of matching file namesto patterns normally falls to the shell. On these
systems, you must explicitly tell Mercurial that a name is a pattern. On Windows, the shell does not expand patterns, so
Mercurial will automatically identify names that are patterns, and expand them for you.

To provide a pattern in place of aregular name on the command line, the mechanism is simple:

lsynt ax: pat t er nbody |

That is, a pattern is identified by a short text string that says what kind of pattern thisis, followed by a colon, followed
by the actual pattern.

Mercurial supports two kinds of pattern syntax. The most frequently used is called gl ob; thisisthe same kind of pattern
matching used by the Unix shell, and should be familiar to Windows command prompt users, too.

When Mercurial does automatic pattern matching on Windows, it uses gl ob syntax. You can thus omit the “gl ob: ”
prefix on Windows, but it's safe to useit, too.

Ther e syntax is more powerful; it lets you specify patterns using regular expressions, also known as regexps.

By the way, in the examples that follow, notice that I'm careful to wrap all of my patterns in quote characters, so that they
won't get expanded by the shell before Mercurial seesthem.

7.4.1. Shell-style gl ob patterns

Thisis an overview of the kinds of patterns you can use when you're matching on glob patterns.

70

File names and pattern matching

The“*” character matches any string, within asingle directory.

$ hg add ' gl ob: *. py’
addi ng mai n. py

The"**” pattern matches any string, and crosses directory boundaries. It's not a standard Unix glob token, but it's accepted
by several popular Unix shells, and is very useful.

$ cd .

$ hg status 'glob:**. py
A exanpl es/ si npl e. py

A src/ main. py

? exanpl es/ performant. py
? setup. py

? src/wat cher/wat cher. py

The"?” pattern matches any single character.

$ hg status 'glob:**.?
? src/watcher/_watcher.c

The“[" character begins a character class. This matches any single character within the class. The class endswitha“] ”
character. A class may contain multiple ranges of the form “a- f ', which is shorthand for “abcdef ”.

$ hg status 'glob:**[nr-t]
? MANI FEST. i n
? src/xyzzy.txt

If the first character after the “[” in acharacter classisa*“! ”, it negates the class, making it match any single character
not in the class.

A “{” begins a group of subpatterns, where the whole group matches if any subpattern in the group matches. The “, ”
character separates subpatterns, and “} ” ends the group.

$ hg status 'glob:*.{in,py}
? MANI FEST. in
? setup. py

7.4.1.1. Watch out!

Don't forget that if you want to match a pattern in any directory, you should not be using the “* ” match-any token, asthis
will only match within one directory. Instead, use the “**” token. This small example illustrates the difference between

the two.

$ hg status 'glob:*.py

? setup. py

$ hg status 'glob:**. py
A exanpl es/ si npl e. py

A src/ main. py

? exanpl es/ performant. py
? setup. py

? src/wat cher/wat cher. py

7.4.2. Regular expression matching with r e patterns

Mercurial acceptsthe same regular expression syntax as the Python programming language (it uses Python's regexp engine
internally). Thisis based on the Perl language's regexp syntax, which is the most popular dialect in use (it's also used in
Java, for example).

| won't discuss Mercuria's regexp dialect in any detail here, as regexps are not often used. Perl-style regexps are in any
case already exhaustively documented on a multitude of web sites, and in many books. Instead, | will focus here on afew
things you should know if you find yourself needing to use regexps with Mercurial.

A regexp is matched against an entire file name, relative to the root of the repository. In other words, even if you're already
in subbdirectory f 00, if you want to match files under this directory, your pattern must start with “f oo/ ”.

71

File names and pattern matching

Onething to note, if you're familiar with Perl-style regexps, isthat Mercurial'sarerooted. That is, aregexp starts matching
against the beginning of a string; it doesn't look for a match anywhere within the string. To match anywhere in a string,
start your pattern with “. *”.

7.5. Filtering files

Not only does Mercurial give you a variety of ways to specify files; it lets you further winnow those files using filters.
Commands that work with file names accept two filtering options.

e -1,o0r--incl ude, letsyou specify apattern that file names must match in order to be processed.
» - X,o0r--excl ude, givesyou away to avoid processing files, if they match this pattern.

Y ou can provide multiple - | and - X options on the command line, and intermix them as you please. Mercurial interprets
the patterns you provide using glob syntax by default (but you can use regexpsif you need to).

Youcanread a- | filter as“process only the files that match thisfilter”.

$ hg status -1 "*.in'
? MANI FEST. i n

The - Xfilter is best read as “ process only the files that don't match this pattern”.

$ hg status -X "**.py' src
? src/watcher/_watcher.c
? src/xyzzy.txt

7.6. Permanently ignoring unwanted files and
directories

When you create anew repository, the chances are that over timeit will grow to contain files that ought to not be managed
by Mercurial, but which you don't want to see listed every time you run hg status. For instance, “build products’ are files
that are created as part of abuild but which should not be managed by arevision control system. The most common build
products are output files produced by software tools such as compilers. As another example, many text editors litter a
directory with lock files, temporary working files, and backup files, which it also makes no sense to manage.

To have Mercurial permanently ignore such files, create a file named . hgi gnor e in the root of your repository. You
should hg add thisfilesothat it getstracked with therest of your repository contents, since your collaboratorswill probably
find it useful too.

By default, the . hgi gnor e file should contain alist of regular expressions, one per line. Empty lines are skipped. Most
people prefer to describe the files they want to ignore using the “glob” syntax that we described above, so a typical
. hgi gnor e filewill start with this directive:

lsyntax: gl ob |

Thistells Mercuria to interpret the lines that follow as glob patterns, not regular expressions.

Hereisatypical-looking . hgi gnor e file.

synt ax: gl ob
This line is a cooment, and will be ski pped.
Enpty |lines are skipped too.

Backup files left behind by the Enacs editor.

* ~

Lock files used by the Enacs editor.

Notice that the "#" character is quoted with a backsl ash.

This prevents it frombeing interpreted as starting a comment.
L\ #*

72

File names and pattern matching

Tenporary files used by the vimeditor.
L%, swp

A hidden file created by the Mac OS X Fi nder.
.DS_Store

7.7. Case sensitivity

If you're working in a mixed development environment that contains both Linux (or other Unix) systems and Macs or
Windows systems, you should keep in the back of your mind the knowledge that they treat the case (“N” versus“n”) of file
names in incompatible ways. Thisis not very likely to affect you, and it's easy to deal with if it does, but it could surprise
you if you don't know about it.

Operating systems and filesystems differ in the way they handle the case of charactersin file and directory names. There
are three common ways to handle case in names.

» Completely case insensitive. Uppercase and lowercase versions of aletter are treated as identical, both when creating a
file and during subsequent accesses. Thisis common on older DOS-based systems.

» Case preserving, but insensitive. When afile or directory is created, the case of its name is stored, and can be retrieved
and displayed by the operating system. When an existing fileis being looked up, its caseisignored. Thisisthe standard
arrangement on Windows and MacOS. The namesf oo and FoOidentify the same file. Thistreatment of uppercase and
lowercase | etters as interchangeable is also referred to as case folding.

» Case sensitive. The case of a name is significant at all times. The names f oo and FoO identify different files. Thisis
the way Linux and Unix systems normally work.

On Unix-like systems, it is possible to have any or al of the above ways of handling case in action at once. For example,
if you use a USB thumb drive formatted with a FAT32 filesystem on a Linux system, Linux will handle names on that
filesystem in a case preserving, but insensitive, way.

7.7.1. Safe, portable repository storage

Mercurial's repository storage mechanism is case safe. It trand atesfile names so that they can be safely stored on both case
sensitive and case insensitive filesystems. This means that you can use normal file copying tools to transfer a Mercuria
repository onto, for example, aUSB thumb drive, and safely move that drive and repository back and forth between aMac,
a PC running Windows, and a Linux box.

7.7.2. Detecting case conflicts

When operating in the working directory, Mercurial honours the naming policy of the filesystem where the working
directory islocated. If the filesystem is case preserving, but insensitive, Mercurial will treat names that differ only in case
asthe same.

An important aspect of this approach is that it is possible to commit a changeset on a case sensitive (typically Linux or
Unix) filesystem that will cause trouble for users on case insensitive (usually Windows and MacOS) users. If aLinux user
commits changes to two files, one named myf i | e. ¢ and the other named MyFi | e. C, they will be stored correctly in
the repository. And in the working directories of other Linux users, they will be correctly represented as separate files.

If aWindows or Mac user pullsthis change, they will not initially have a problem, because Mercurial's repository storage
mechanism is case safe. However, once they try to hg update the working directory to that changeset, or hg mer ge with
that changeset, Mercurial will spot the conflict between the two file names that the filesystem would treat as the same, and
forbid the update or merge from occurring.

7.7.3. Fixing a case conflict

If you are using Windows or aMac in amixed environment where some of your collaborators are using Linux or Unix, and
Mercurial reportsacasefolding conflict when you try to hg update or hg mer ge, the procedureto fix the problemissimple.

73

File names and pattern matching

Just find a nearby Linux or Unix box, clone the problem repository onto it, and use Mercurial's hg rename command to
change the names of any offending files or directories so that they will no longer cause case folding conflicts. Commit this
change, hg pull or hg push it across to your Windows or MacOS system, and hg update to the revision with the non-
conflicting names.

The changeset with case-conflicting names will remain in your project's history, and you still won't be able to hg update
your working directory to that changeset on a Windows or MacOS system, but you can continue devel opment unimpeded.

74

Chapter 8. Managing releases and branchy
development

Mercurial provides several mechanisms for you to manage a project that is making progress on multiple fronts at once. To
understand these mechanisms, let's first take a brief look at afairly normal software project structure.

Many software projects issue periodic “major” releases that contain substantial new features. In parallel, they may issue
“minor” releases. These are usually identical to the major releases off which they're based, but with afew bugs fixed.

In this chapter, we'll start by talking about how to keep records of project milestones such as releases. We'll then continue
on to talk about the flow of work between different phases of a project, and how Mercurial can help you to isolate and
manage this work.

8.1. Giving a persistent name to a revision

Onceyou decidethat you'd liketo call aparticular revision a“release”, it'sagood ideato record theidentity of that revision.
This will let you reproduce that release at a later date, for whatever purpose you might need at the time (reproducing a
bug, porting to a new platform, etc).

$ hg init mytag

$ cd nytag

$ echo hello > nyfile

$ hg conmit -A-m'Initial commit
adding nyfile

Mercuria lets you give a permanent name to any revision using the hg tag command. Not surprisingly, these names are
caled “tags’.

| hg tag v1.0

A tag is nothing more than a“symbolic name” for arevision. Tags exist purely for your convenience, so that you have a
handy permanent way to refer to a revision; Mercurial doesn't interpret the tag names you use in any way. Neither does
Mercurial place any restrictions on the name of atag, beyond a few that are necessary to ensure that a tag can be parsed
unambiguously. A tag name cannot contain any of the following characters:

e Colon (ASCII 58, “: ")
» Carriagereturn (ASCII 13,“\ r ")
* Newline (ASCII 10, “\ n”)

You can use the hg tags command to display the tags present in your repository. In the output, each tagged revision is
identified first by its name, then by revision number, and finally by the unique hash of the revision.

$ hg tags
tip 1: 7097daee813f
1.0 0: 2cad4deb77e81

Notice that ti p is listed in the output of hg tags. Theti p tag is a specia “floating” tag, which aways identifies the
newest revision in the repository.

In the output of the hg tags command, tags are listed in reverse order, by revision number. This usually means that recent
tags are listed before older tags. It also meansthat t i p isaways going to be the first tag listed in the output of hg tags.

When you run hg log, if it displays arevision that has tags associated with it, it will print those tags.

$ hg 1 og

changeset : 1: 7097daee813f

tag: tip

user : Bryan O Sul l'i van <bos@er penti ne. conr

75

Managing releases and
branchy development

dat e: Mon Nov 01 23:58:33 2010 +0000

summary: Added tag v1.0 for changeset 2cad4deb77e81
changeset : 0: 2cad4deb77e81

t ag: v1l.0

user: Bryan O Sul l'i van <bos@er penti ne. con>

dat e: Mon Nov 01 23:58:33 2010 +0000

summary: Initial commt

Any time you need to provide arevision ID to a Mercuriadl command, the command will accept atag name in its place.
Internally, Mercurial will trandate your tag name into the corresponding revision 1D, then use that.

$ echo goodbye > nyfile2

$ hg conmit -A -m' Second commit
addi ng nyfile2

$ hg log -r v1.0

changeset : 0: 2cad4deb77e81

t ag: v1.0

user: Bryan O Sul |l i van <bos@er penti ne. con»
dat e: Mon Nov 01 23:58:33 2010 +0000
summary: Initial commit

There's no limit on the number of tags you can have in a repository, or on the number of tags that a single revision can
have. As a practical matter, it's not a great idea to have “too many” (a number which will vary from project to project),
simply because tags are supposed to help you to find revisions. If you have lots of tags, the ease of using them to identify
revisions diminishes rapidly.

For example, if your project has milestones as frequent as every few days, it's perfectly reasonabl e to tag each one of those.
But if you have a continuous build system that makes sure every revision can be built cleanly, you'd be introducing a lot
of noise if you were to tag every clean build. Instead, you could tag failed builds (on the assumption that they're rare!),
or simply not use tags to track buildability.

If you want to remove atag that you no longer want, use hg tag --remove.

$ hg tag --renove v1.0
$ hg tags
tip 3: 8f a8c5f 9f b4c

You can also modify atag at any time, so that it identifies a different revision, by simply issuing a new hg tag command.
You'll haveto usethe - f option to tell Mercurial that you really want to update the tag.

$ hg tag -r 1 vi.1

$ hg tags
tip 4: Tbca07342f 6f
vi.1 1: 7097daee813f

$ hg tag -r 2 vi.1
abort: tag 'vl1.1' already exists (use -f to force)
$ hg tag -f -r 2 vl.1

$ hg tags
tip 5: f 0e3bae9934a
vi.1 2:2e34816a99f 9

There will till be a permanent record of the previous identity of the tag, but Mercurial will no longer use it. There's thus
no penalty to tagging the wrong revision; all you have to do is turn around and tag the correct revision once you discover
your error.

Mercurial stores tags in a normal revision-controlled file in your repository. If you've created any tags, you'll find them
in afile in the root of your repository named . hgt ags. When you run the hg tag command, Mercurial modifies this
file, then automatically commits the change to it. This means that every time you run hg tag, you'll see a corresponding
changeset in the output of hg log.

$ hg tip

changeset : 5: f 0e3bae9934a

tag: tip

user : Bryan O Sul l'i van <bos@er penti ne. con>

76

Managing releases and
branchy development

dat e: Mon Nov 01 23:58:34 2010 +0000
summary: Added tag v1.1 for changeset 2e34816a99f9

8.1.1. Handling tag conflicts during a merge

Y ou won't often need to care about the . hgt ags file, but it sometimes makes its presence known during a merge. The
format of the file is simple: it consists of a series of lines. Each line starts with a changeset hash, followed by a space,
followed by the name of atag.

If you'reresolving aconflictinthe . hgt ags file during amerge, there's one twist to modifying the . hgt ags file: when
Mercurial is parsing the tags in a repository, it never reads the working copy of the . hgt ags file. Instead, it reads the
most recently committed revision of the file.

An unfortunate consequence of this design is that you can't actually verify that your merged . hgt ags fileis correct until
after you've committed a change. So if you find yourself resolving a conflict on. hgt ags during a merge, be sure to run
hg tags after you commit. If it finds an error in the . hgt ags file, it will report the location of the error, which you can
then fix and commit. Y ou should then run hg tags again, just to be sure that your fix is correct.

8.1.2. Tags and cloning

Y ou may have noticed that the hg clone command has a- r option that lets you clone an exact copy of the repository as
of a particular changeset. The new clone will not contain any project history that comes after the revision you specified.
This has an interaction with tags that can surprise the unwary.

Recall that atagisstored asarevisiontothe. hgt ags file. Whenyou create atag, the changeset inwhichitsrecorded refers
to an older changeset. When you run hg clone -r foo to clone arepository as of tag f 00, the new clone will not contain
any revision newer than the onethetagrefersto, including therevision wherethetag was created. Theresult is that
you'll get exactly the right subset of the project's history in the new repository, but not the tag you might have expected.

8.1.3. When permanent tags are too much

Since Mercuria's tags are revision controlled and carried around with a project’s history, everyone you work with will see
the tags you create. But giving names to revisions has uses beyond simply noting that revision 4237e45506ee isredly
v2. 0. 2. If you're trying to track down a subtle bug, you might want a tag to remind you of something like “Anne saw
the symptoms with this revision”.

For cases like this, what you might want to use are local tags. Y ou can create alocal tag with the - | option to the hg tag
command. Thiswill storethetaginafilecalled. hg/ | ocal t ags. Unlike. hgt ags, . hg/ | ocal t ags isnot revision
controlled. Any tagsyou createusing - | remain strictly local to the repository you're currently working in.

8.2. The flow of changes—nbig picture vs. little

To return to the outline | sketched at the beginning of the chapter, let's think about a project that has multiple concurrent
pieces of work under development at once.

There might be a push for anew “main” release; a new minor bugfix release to the last main release; and an unexpected
“hot fix” to an old release that is now in maintenance mode.

The usual way people refer to these different concurrent directions of development is as “branches’. However, we've
already seen numerous times that Mercurial treats all of history as a series of branches and merges. Really, what we have
here istwo ideas that are peripherally related, but which happen to share a name.

» “Big picture” branches represent the sweep of a project's evolution; people give them names, and talk about them in
conversation.

» “Little picture” branches are artefacts of the day-to-day activity of developing and merging changes. They expose the
narrative of how the code was devel oped.

77

Managing releases and
branchy development

8.3. Managing big-picture branches in repositories

The easiest way to isolate a “big picture” branch in Mercuria isin a dedicated repository. If you have an existing shared
repository—Ilet's call it mypr oj ect —that reaches a “1.0” milestone, you can start to prepare for future maintenance
releases on top of version 1.0 by tagging the revision from which you prepared the 1.0 release.

$ cd nyproj ect
$ hg tag v1.0

Y ou can then clone anew shared nypr oj ect - 1. 0. 1 repository as of that tag.

$ cd .

$ hg clone nyproject nyproject-1.0.1

updating to branch default

2 files updated, O files nmerged, O files renoved, O files unresolved

Afterwards, if someone needs to work on a bug fix that ought to go into an upcoming 1.0.1 minor release, they clone the
nmypr oj ect - 1. 0. 1 repository, make their changes, and push them back.

$ hg clone nmyproject-1.0.1 nmy-1.0.1-bugfix

updating to branch default

2 files updated, O files nmerged, O files renoved, O files unresol ved
$ cd ny-1.0. 1-bugfix

$ echo '|I fixed a bug using only echo!' >> nyfile
$ hg conmit -m'Inportant fix for 1.0.1
$ hg push

pushing to /tnp/branch-repoSJJ4tt/ myproject-1.0.1
sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files

Meanwhile, development for the next major release can continue, isolated and unabated, in the nypr oj ect repository.

$ cd .

$ hg clone nyproject ny-feature

updating to branch default

2 files updated, O files nerged, O files renpved, O files unresol ved
$ cd ny-feature

$ echo 'This sure is an exciting new feature!' > nynewfile
$ hg commit -A -m' New feature

addi ng mynewfile

$ hg push

pushing to /tnp/branch-repoSJJ4tt/ myproj ect

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files

8.4. Don't repeat yourself: merging across
branches

In many cases, if you have abug to fix on a maintenance branch, the chances are good that the bug exists on your project's
main branch (and possibly other maintenance branches, too). It's a rare developer who wants to fix the same bug multiple
times, so let'slook at afew ways that Mercurial can help you to manage these bugfixes without duplicating your work.

In the simplest instance, al you need to do is pull changes from your maintenance branch into your local clone of the
target branch.

$ cd .

$ hg cl one nmyproject nyproject-nerge

updating to branch default

3 files updated, O files nmerged, O files renoved, O files unresolved

78

Managing releases and
branchy development

$ cd nyproj ect-nerge

$ hg pull ../nmyproject-1.0.1

pulling from../nyproject-1.0.1

sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg nerge' to nerge)

You'll then need to merge the heads of the two branches, and push back to the main branch.

$ hg nerge

1 files updated, O files nerged, O files renoved, O files unresol ved
(branch nmerge, don't forget to conmmt)

$ hg commit -m' Merge bugfix from1.0.1 branch
$ hg push

pushing to /tnp/branch-repoSJJ4tt/ myproj ect
sear chi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 2 changesets with 1 changes to 1 files

8.5. Naming branches within one repository

In most instances, isolating branchesin repositoriesisthe right approach. Its simplicity makesit easy to understand; and so
it's hard to make mistakes. There's a one-to-one relationship between branches you're working in and directories on your
system. Thislets you use normal (non-Mercurial-aware) tools to work on files within a branch/repository.

If you're more in the “power user” category (and your collaborators are too), there is an aternative way of handling
branches that you can consider. I've aready mentioned the human-level distinction between “small picture” and “big
picture’ branches. While Mercurial works with multiple “small picture” branchesin arepository al the time (for example
after you pull changesin, but before you merge them), it can also work with multiple “big picture” branches.

The key to working thisway isthat Mercurial lets you assign a persistent name to a branch. There always exists a branch
named def aul t . Even before you start naming branches yourself, you can find traces of the def aul t branch if you
look for them.

Asan example, when you run the hg commit command, and it pops up your editor so that you can enter acommit message,
look for aline that containsthetext “HG. br anch def aul t ” at the bottom. Thisistelling you that your commit will
occur on the branch named def aul t .

To start working with named branches, use the hg branches command. This command lists the named branches aready
present in your repository, telling you which changeset is the tip of each.

$ hg tip

changeset : 0: b7305f 369726

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:57:40 2010 +0000
sunmary: Initial comit

$ hg branches

def aul t 0: b7305f 369726

Since you haven't created any named branches yet, the only one that existsisdef aul t .

Tofind out what the “current” branch is, run the hg branch command, giving it no arguments. Thistells you what branch
the parent of the current changeset is on.

$ hg branch
def aul t

To create a new branch, run the hg branch command again. Thistime, give it one argument: the name of the branch you
want to create.

79

Managing releases and
branchy development

$ hg branch foo

mar ked wor ki ng directory as branch foo
$ hg branch

f 0o

After you've created a branch, you might wonder what effect the hg branch command has had. What do the hg status
and hg tip commands report?

$ hg status

$ hg tip

changeset : 0: b7305f 369726

tag: tip

user : Bryan O Sul |l i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:57:40 2010 +0000
summary: Initial commt

Nothing has changed in the working directory, and there's been no new history created. As this suggests, running the hg
branch command has no permanent effect; it only tells Mercurial what branch name to use the next time you commit a
changeset.

When you commit a change, Mercuria records the name of the branch on which you committed. Once you've switched
from the def aul t branch to another and committed, you'll see the name of the new branch show up in the output of hg
log, hg tip, and other commands that display the same kind of outpuit.

$ echo 'hello again' >> nyfile

$ hg commit -m ' Second conmit'

$ hg tip

changeset : 1: 354a82eeedcO

br anch: foo

t ag: tip

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:57:41 2010 +0000
summary: Second conmmit

The hg log-like commands will print the branch name of every changeset that's not on the def aul t branch. As aresult,
if you never use named branches, you'll never see this information.

Once you've named a branch and committed a change with that name, every subsequent commit that descends from that
changewill inherit the same branch name. Y ou can change the name of abranch at any time, using the hg branch command.

$ hg branch

f oo

$ hg branch bar

mar ked working directory as branch bar
$ echo new file > newfile

$ hg commit -A -m'Third conmt

addi ng newfile

$ hg tip

changeset : 2: aadf a35f a9el

br anch: bar

t ag: tip

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:57:42 2010 +0000
sunmmary: Third comm t

In practice, this is something you won't do very often, as branch names tend to have fairly long lifetimes. (Thisisn't a
rule, just an observation.)

8.6. Dealing with multiple named branches in a
repository

If you have more than one named branch in arepository, Mercurial will remember the branch that your working directory
ison when you start acommand like hg update or hg pull -u. It will update the working directory to thetip of this branch,

80

Managing releases and
branchy development

no matter what the “repo-wide” tip is. To update to a revision that's on a different named branch, you may need to use
the - C option to hg update.

This behavior is alittle subtle, so let's see it in action. First, let's remind ourselves what branch we're currently on, and
what branches are in our repository.

$ hg parents

changeset : 2: aadf a35f a9el

br anch: bar

t ag: tip

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:57:42 2010 +0000
summary: Third comm t

$ hg branches

bar 2: aadf a35f a%el
f 0o 1: 354a82eeedc0 (i nactive)
def aul t 0: b7305f 369726 (inactive)

We're on the bar branch, but there also exists an older hg foo branch.

We can hg update back and forth between the tips of the f oo and bar branches without needing to use the - C option,
because this only involves going backwards and forwards linearly through our change history.

$ hg update foo
O files updated, O files nmerged, 1 files removed, O files unresol ved
$ hg parents

changeset : 1: 354a82eeedcO

br anch: foo

user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:57:41 2010 +0000
sunmary: Second commit

$ hg update bar
1 files updated, O files nerged, O files renoved, O files unresol ved
$ hg parents

changeset : 2: aadf a35f a%el

br anch: bar

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:57:42 2010 +0000
sunmary: Third comm t

If we go back to thef oo branch and then run hg update, it will keep uson f 00, not move usto thetip of bar .

$ hg update foo

O files updated, O files nmerged, 1 files renmoved, O files unresol ved
$ hg update

O files updated, O files nmerged, O files removed, O files unresol ved

Committing a new change on the f oo branch introduces a new head.

$ echo something > sonefile

$ hg commit -A-m'New file

addi ng sonefile

$ hg heads

changeset : 3: f66de03b7d2a

br anch: foo

t ag: tip

parent: 1: 354a82eeedcO

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:57:43 2010 +0000
summary: New file

changeset : 2: aadf a35f a9el

br anch: bar

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:57:42 2010 +0000
sunmmary: Third comm t

81

Managing releases and
branchy development

changeset : 0: b7305f 369726

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:57:40 2010 +0000
summary: Initial commt

8.7. Branch names and merging

Asyou've probably noticed, mergesin Mercurial are not symmetrical. Let's say our repository hastwo heads, 17 and 23. If
| hg update to 17 and then hg mer ge with 23, Mercurial records 17 as the first parent of the merge, and 23 as the second.
Whereasif | hg update to 23 and then hg merge with 17, it records 23 as the first parent, and 17 as the second.

This affects Mercurial's choice of branch name when you merge. After amerge, Mercurial will retain the branch name of
the first parent when you commit the result of the merge. If your first parent's branch name is f 0o, and you merge with
bar , the branch name will till bef oo after you merge.

It's not unusual for arepository to contain multiple heads, each with the same branch name. Let's say I'm working on the
f 0o branch, and so are you. We commit different changes; | pull your changes; | now have two heads, each claiming to
be on the f oo branch. The result of amerge will be asingle head on the f oo branch, as you might hope.

But if I'm working on the bar branch, and I merge work from the f oo branch, the result will remain on the bar branch.

$ hg branch

bar

$ hg nerge foo

1 files updated, O files nerged, O files renoved, O files unresol ved
(branch merge, don't forget to conmit)

$ hg commit -m ' Merge

$ hg tip

changeset : 4: 8ce2ffa73a23

br anch: bar

t ag: tip

parent: 2: aadf a35f a%el

parent: 3: f66de03b7d2a

user: Bryan O Sul | i van <bos@er penti ne. con»
dat e: Mon Nov 01 23:57:44 2010 +0000
sunmary: Mer ge

To give amore concrete example, if I'm working on the bl eedi ng- edge branch, and | want to bring in the latest fixes
from the st abl e branch, Mercuria will choose the “right” (bl eedi ng- edge) branch name when | pull and merge
from st abl e.

8.8. Branch naming is generally useful

You shouldn't think of named branches as applicable only to situations where you have multiple long-lived branches
cohabiting in asingle repository. They're very useful even in the one-branch-per-repository case.

In the simplest case, giving a name to each branch gives you a permanent record of which branch a changeset originated
on. This gives you more context when you're trying to follow the history of along-lived branchy project.

If you'reworking with shared repositories, you can set up apr et xnchangegr oup hook on each that will block incoming
changes that have the “wrong” branch name. This provides a simple, but effective, defence against people accidentally
pushing changes from a “bleeding edge” branch to a “stable” branch. Such a hook might look like this inside the shared
repo's /. hgrec.

[hooks]
pr et xnchangegr oup. branch = hg heads --tenplate '{branches} ' | grep nybranch

82

Chapter 9. Finding and fixing mistakes

To err might be human, but to really handle the consequences well takes atop-notch revision control system. Inthischapter,
well discuss some of the techniques you can use when you find that a problem has crept into your project. Mercurial has
some highly capable features that will help you to isolate the sources of problems, and to handle them appropriately.

9.1. Erasing local history

9.1.1. The accidental commit

| have the occasional but persistent problem of typing rather more quickly than | can think, which sometimes results in
me committing a changeset that is either incomplete or plain wrong. In my case, the usua kind of incomplete changeset
isone in which I've created a new source file, but forgotten to hg add it. A “plain wrong” changeset is not as common,
but no less annoying.

9.1.2. Rolling back a transaction

In Section 4.2.2, “ Safe operation”, | mentioned that Mercurial treats each modification of a repository as a transaction.
Every time you commit a changeset or pull changes from another repository, Mercurial remembers what you did. You
can undo, or roll back, exactly one of these actions using the hg rollback command. (See Section 9.1.4, “Rolling back is
usel ess once you've pushed” for an important caveat about the use of this command.)

Here's a mistake that | often find myself making: committing a change in which I've created a new file, but forgotten to
hg add it.

$ hg status

M a

$ echo b > b

$ hg commit -m"Add file b

Looking at the output of hg status after the commit immediately confirms the error.

$ hg status

? b

$ hg tip

changeset : 1: 3265dc34b65c

t ag: tip

user: Bryan O Sul |l i van <bos@er penti ne. con»
dat e: Mon Nov 01 23:58:32 2010 +0000
sunmary: Add file b

The commit captured the changes to the file a, but not the new file b. If | were to push this changeset to a repository that
| shared with a colleague, the chances are high that something in a would refer to b, which would not be present in their
repository when they pulled my changes. | would thus become the object of some indignation.

However, luck is with me—I've caught my error before | pushed the changeset. | use the hg rollback command, and
Mercurial makes that last changeset vanish.

$ hg roll back

rolling back to revision O (undo comit)

$ hg tip

changeset : 0: 322e8ae2abdf

t ag: tip

user: Bryan O Sul |l i van <bos@er penti ne. con»
dat e: Mon Nov 01 23:58:32 2010 +0000
summary: First commt

$ hg status

M a

? b

83

Finding and fixing mistakes

Notice that the changeset is no longer present in the repository's history, and the working directory once again thinks that
the file a is modified. The commit and rollback have left the working directory exactly as it was prior to the commit; the
changeset has been completely erased. | can now safely hg add the file b, and rerun my commit.

$ hg add b
$ hg commit -m'Add file b, this time for real

9.1.3. The erroneous pull

It's common practice with Mercurial to maintain separate devel opment branches of aproject in different repositories. Y our
development team might have one shared repository for your project's “0.9” release, and another, containing different
changes, for the “1.0" release.

Given this, you can imagine that the conseguences could be messy if you had alocal “0.9” repository, and accidentally
pulled changes from the shared “ 1.0” repository into it. At worst, you could be paying insufficient attention, and push those
changes into the shared “0.9” tree, confusing your entire team (but don't worry, we'll return to this horror scenario later).
However, it's more likely that you'll notice immediately, because Mercurial will display the URL it's pulling from, or you
will seeit pull asuspiciously large number of changes into the repository.

The hg rollback command will work nicely to expunge all of the changesets that you just pulled. Mercurial groups all
changes from one hg pull into a single transaction, so one hg rollback is all you need to undo this mistake.

9.1.4. Rolling back is useless once you've pushed

The value of the hg rollback command drops to zero once you've pushed your changes to another repository. Rolling back
achange makes it disappear entirely, but only in the repository in which you perform the hg rollback. Because arollback
eliminates history, there's no way for the disappearance of a change to propagate between repositories.

If you've pushed a change to another repository—particularly if it's a shared repository—it has essentially “escaped into
the wild,” and you'll have to recover from your mistake in a different way. If you push a changeset somewhere, then roll
it back, then pull from the repository you pushed to, the changeset you thought you'd gotten rid of will simply reappear
in your repository.

(If you absolutely know for sure that the change you want to roll back isthe most recent change in the repository that you
pushed to, and you know that nobody else could have pulled it from that repository, you can roll back the changeset there,
too, but you really should not expect thisto work reliably. Sooner or later achange really will makeit into arepository that
you don't directly control (or have forgotten about), and come back to bite you.)

9.1.5. You can only roll back once

Mercurial stores exactly one transaction in its transaction log; that transaction is the most recent one that occurred in the
repository. This means that you can only roll back one transaction. If you expect to be able to roll back one transaction,
then its predecessor, thisis not the behavior you will get.

$ hg rollback

rolling back to revision 0 (undo conmmt)
$ hg rollback

no rol |l back information avail able

Once you've rolled back one transaction in a repository, you can't roll back again in that repository until you perform
another commit or pull.

9.2. Reverting the mistaken change

If you make a modification to afile, and decide that you really didn't want to change the file at all, and you haven't yet
committed your changes, the hg revert command is the one you'll need. It looks at the changeset that's the parent of the
working directory, and restores the contents of the file to their state as of that changeset. (That's a long-winded way of
saying that, in the normal case, it undoes your modifications.)

Finding and fixing mistakes

Let'sillustrate how the hg revert command works with yet another small example. Well begin by modifying afile that
Mercurial is already tracking.

$ cat file
ori gi nal content
$ echo unwanted change >> file
$ hg diff file
di ff -r 67ace68da3c6 file
- a/file Mon Nov 01 23:58:07 2010 +0000
+++ b/file Mon Nov 01 23:58:07 2010 +0000
a-1,1 +1,2 @@
original content
+unwant ed change

If we don't want that change, we can simply hg revert thefile.

$ hg status
Mfile

$ hg revert file
$ cat file
ori gi nal content

The hg revert command provides us with an extra degree of safety by saving our modified filewitha. or i g extension.

$ hg status
? file.orig
$ cat file.orig
ori gi nal content
unwant ed change

Be careful with . ori g files

It'sextremely unlikely that you are either using Mercurial to managefileswith. or i g extensionsor that you
even care about the contents of such files. Just in case, though, it's useful to remember that hg revert will
unconditionally overwrite an existing file with a. or i g extension. For instance, if you already have afile
named f 00. or i g when you revert f 0o, the contents of f 00. or i g will be clobbered.

Here is a summary of the cases that the hg revert command can deal with. We will describe each of these in more detail
in the section that follows.

 If you modify afile, it will restore the file to its unmodified state.
 If you hg add afile, it will undo the “added” state of the file, but leave the file itself untouched.
« If you delete afile without telling Mercurial, it will restore the file to its unmodified contents.

* If you use the hg remove command to remove afile, it will undo the “removed” state of the file, and restore the file
to its unmodified contents.

9.2.1. File management errors

The hg revert command is useful for more than just modified files. It lets you reverse the results of al of Mercuria'sfile
management commands—hg add, hg remove, and so on.

If you hg add afile, then decide that in fact you don't want Mercurial to track it, use hg revert to undo the add. Don't
worry; Mercurial will not modify the filein any way. It will just “unmark” thefile.

echo oops > oops
hg add oops

hg status oops
oops

hg revert oops
hg status

oops

I T S o

Similarly, if you ask Mercurial to hg remove afile, you can use hg revert to restore it to the contents it had as of the
parent of the working directory.

85

Finding and fixing mistakes

$ hg renove file
$ hg status

R file
$ hg revert file
$ hg status

$Is file

file

Thisworksjust aswell for afile that you deleted by hand, without telling Mercurial (recall that in Mercurial terminology,
thiskind of fileis called “missing”).

$ rmfile

$ hg status

I file

$ hg revert file
$Is file

file

If you revert a hg copy, the copied-to file remains in your working directory afterwards, untracked. Since a copy doesn't
affect the copied-from file in any way, Mercurial doesn't do anything with the copied-from file.

$ hg copy file newfile
$ hg revert newfile

$ hg status

? newfile

9.3. Dealing with committed changes

Consider a case where you have committed a change a, and another change b on top of it; you then realise that change
awas incorrect. Mercurial lets you “back out” an entire changeset automatically, and building blocks that let you reverse
part of a changeset by hand.

Before you read this section, here's something to keep in mind: the hg backout command undoes the effect of achange by
adding to your repository's history, not by modifying or erasing it. It's the right tool to use if you're fixing bugs, but not
if you're trying to undo some change that has catastrophic consequences. To deal with those, see Section 9.4, “Changes
that should never have been”.

9.3.1. Backing out a changeset

The hg backout command letsyou “undo” the effects of an entire changeset in an automated fashion. Because Mercuria's
history isimmutable, thiscommand does not get rid of the changeset you want to undo. Instead, it creates a new changeset
that r ever ses the effect of the to-be-undone changeset.

The operation of the hg backout command is alittle intricate, so let'sillustrate it with some examples. First, we'll create
arepository with some simple changes.

hg init nyrepo

cd nyrepo

echo first change >> nyfile
hg add nyfile

hg commit -m'first change
echo second change >> nyfile
hg commt -m'second change'

LR R R T R T T T

The hg backout command takes a single changeset ID as its argument; this is the changeset to back out. Normally, hg
backout will drop you into atext editor to write acommit message, so you can record why you're backing the change out.
In this example, we provide a commit message on the command line using the - moption.

9.3.2. Backing out the tip changeset

We're going to start by backing out the last changeset we committed.

@ hg backout -m'back out second change' tip

86

Finding and fixing mistakes

reverting nyfile

changeset 2:ab7904d024ff backs out changeset 1:3e29535b3e81
$ cat myfile

first change

Y ou can seethat the second linefrom nyf i | e isnolonger present. Taking alook at the output of hg log gives us an idea
of what the hg backout command has done.

$ hg log --style conpact
2[tip] ab7904d024f f 2010-11-01 23:57 +0000 bos
back out second change

1 3e29535b3e81 2010-11-01 23:57 +0000 bos
second change

0 aB8556a3a414b 2010-11-01 23:57 +0000 bos
first change

Notice that the new changeset that hg backout has created is a child of the changeset we backed out. It's easier to seethis
in Figure 9.1, “Backing out a change using the hg backout command”, which presents a graphical view of the change
history. Asyou can see, the history is nice and linear.

Figure 9.1. Backing out a change using the hg backout command

second change

back out
second change

9.3.3. Backing out a non-tip change

If you want to back out a change other than the last one you committed, pass the - - mer ge option to the hg backout
command.

$ cd .

$ hg clone -rl1 nyrepo non-tip-repo

addi ng changesets

addi ng mani fests

adding file changes

added 2 changesets with 2 changes to 1 files

updating to branch default

1 files updated, O files nerged, O files renoved, O files unresol ved
$ cd non-tip-repo

This makes backing out any changeset a“one-shot” operation that's usually simple and fast.

$ echo third change >> nyfile
$ hg commit -m'third change
$ hg backout --nmerge -m'back out second change' 1

87

Finding and fixing mistakes

reverting nyfile

created new head

changeset 3:59cd5bc2b9ee backs out changeset 1:3e29535b3e81

merging with changeset 3:59cd5bc2b9ee

merging nyfile

O files updated, 1 files merged, O files renmoved, O files unresol ved
(branch nmerge, don't forget to conmt)

If you take alook at the contentsof nyf i | e after the backout finishes, you'll seethat thefirst and third changes are present,
but not the second.

$ cat myfile
first change
t hird change

Asthegraphical history in Figure 9.2, “ Automated backout of anon-tip change using the hg backout command” illustrates,
Mercuria still commits one change in this kind of situation (the box-shaped node is the ones that Mercurial commits
automatically), but the revision graph now looks different. Before Mercurial begins the backout process, it first remembers
what the current parent of the working directory is. It then backs out the target changeset, and commits that as a changeset.
Finally, it merges back to the previous parent of the working directory, but notice that it does not commit the result of the
merge. The repository now contains two heads, and the working directory isin amerge state.

Figure 9.2. Automated backout of a non-tip change using the hg backout command

back out

third change second change

automated
merge

Theresult isthat you end up “back where you were”, only with some extra history that undoes the effect of the changeset
you wanted to back out.

Y ou might wonder why Mercurial does not commit the result of the merge that it performed. The reason liesin Mercurial
behaving conservatively: a merge naturally has more scope for error than simply undoing the effect of the tip changeset,
so your work will be safest if you first inspect (and test!) the result of the merge, then commit it.

9.3.3.1. Always use the - - ner ge option

Infact, since the - - mer ge option will do the “right thing” whether or not the changeset you're backing out isthetip (i.e.
it won't try to merge if it's backing out the tip, since there's no need), you should always use this option when you run
the hg backout command.

88

Finding and fixing mistakes

9.3.4. Gaining more control of the backout process

While I've recommended that you always use the - - mer ge option when backing out a change, the hg backout command
lets you decide how to merge a backout changeset. Taking control of the backout process by hand is something you will
rarely need to do, but it can be useful to understand what the hg backout command is doing for you automatically. To
illustrate this, let's clone our first repository, but omit the backout change that it contains.

$ cd .

$ hg clone -rl1 nyrepo new epo

addi ng changesets

addi ng mani fests

addi ng file changes

added 2 changesets with 2 changes to 1 files

updating to branch default

1 files updated, O files nerged, O files renpved, O files unresol ved
$ cd new epo

Aswith our earlier example, We'll commit athird changeset, then back out its parent, and see what happens.

$ echo third change >> nyfile

$ hg commit -m'third change

$ hg backout -m'back out second change' 1

reverting nyfile

merging nyfile

O files updated, 1 files nmerged, O files renoved, O files unresol ved

Our new changeset is again a descendant of the changeset we backout out; it's thus a new head, not a descendant of the
changeset that was the tip. The hg backout command was quite explicit in telling us this.

$ hg log --style conpact
2[tip] 435264f27427 2010-11-01 23:57 +0000 hos
third change

1 3e29535b3e81 2010-11-01 23:57 +0000 bos
second change

0 aB8556a3a414b 2010-11-01 23:57 +0000 bos
first change

Again, it's easier to see what has happened by looking at a graph of the revision history, in Figure 9.3, “Backing out a
change using the hg backout command”. Thismakesit clear that when we use hg backout to back out a change other than
the tip, Mercurial adds a new head to the repository (the change it committed is box-shaped).

Figure 9.3. Backing out a change using the hg backout command

second change

back out

third change second change

89

Finding and fixing mistakes

After thehg backout command has completed, it leavesthe new “backout” changeset asthe parent of theworking directory.

$ hg parents

changeset : 2: 435264f 27427

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con»
dat e: Mon Nov 01 23:57:33 2010 +0000
sunmary: third change

Now we have two isolated sets of changes.

$ hg heads

changeset : 2: 435264f 27427

t ag: tip

user: Bryan O Sul |l i van <bos@er penti ne. con»
dat e: Mon Nov 01 23:57:33 2010 +0000
summary: third change

Let'sthink about what we expect to see asthe contents of nyf i | e now. Thefirst change should be present, because we've
never backed it out. The second change should be missing, as that's the change we backed out. Since the history graph
shows the third change as a separate head, we don't expect to see the third change present inmyf i | e.

$ cat myfile
first change

To get the third change back into the file, we just do a normal merge of our two heads.

$ hg merge

abort: there is nothing to nerge

$ hg commt -m'nmerged backout with previous tip
$ cat nmyfile

first change

Afterwards, the graphical history of our repository 1ooks like Figure 9.4, “Manually merging a backout change”.

Figure 9.4. Manually merging a backout change

second change

back out
second change

third change

90

Finding and fixing mistakes

9.3.5. Why hg backout works as it does

Here's abrief description of how the hg backout command works.
1. It ensures that the working directory is*“clean”, i.e. that the output of hg status would be empty.
2. It remembers the current parent of the working directory. Let's call this changeset or i g.

3. It does the equivalent of a hg update to sync the working directory to the changeset you want to back out. Let's call
this changeset backout .

4. It finds the parent of that changeset. Let's call that changeset par ent .

5. For eachfilethat thebackout changeset affected, it doesthe equivalent of ahgrevert -r parent onthat file, to restore
it to the contents it had before that changeset was committed.

6. It commitsthe result as a new changeset. This changeset hasbackout asits parent.
7. 1f you specify - - mer ge on the command line, it mergeswith or i g, and commits the result of the merge.

An aternative way to implement the hg backout command would be to hg export the to-be-backed-out changeset as a
diff, then use the - - r ever se option to the patch command to reverse the effect of the change without fiddling with the
working directory. This sounds much simpler, but it would not work nearly as well.

The reason that hg backout does an update, a commit, a merge, and another commit is to give the merge machinery the
best chance to do agood job when dealing with all the changes between the change you're backing out and the current tip.

If you're backing out a changeset that's 100 revisions back in your project's history, the chances that the patch command
will beableto apply areverse diff cleanly are not good, because intervening changes arelikely to have “ broken the context”
that patch uses to determine whether it can apply a patch (if this sounds like gibberish, see Section 12.4, “Understanding
patches’ for adiscussion of the patch command). Also, Mercuria's merge machinery will handlefilesand directoriesbeing
renamed, permission changes, and modifications to binary files, none of which patch can dea with.

9.4. Changes that should never have been

Most of the time, the hg backout command is exactly what you need if you want to undo the effects of achange. It leavesa
permanent record of exactly what you did, both when committing the original changeset and when you cleaned up after it.

On rare occasions, though, you may find that you've committed a change that really should not be present in the repository
at al. For example, it would be very unusual, and usualy considered a mistake, to commit a software project's object
filesas well asits source files. Object files have amost no intrinsic value, and they're big, so they increase the size of the
repository and the amount of time it takes to clone or pull changes.

Before | discuss the options that you have if you commit a“brown paper bag” change (the kind that's so bad that you want
to pull abrown paper bag over your head), let me first discuss some approaches that probably won't work.

Since Mercurial treats history as accumul ative—every change builds on top of al changes that preceded it—you generally
can't just make disastrous changes disappear. The one exception is when you've just committed a change, and it hasn't
been pushed or pulled into another repository. That's when you can safely use the hg rollback command, as| detailed in
Section 9.1.2, “Rolling back atransaction”.

After you've pushed a bad change to another repository, you could still use hg rollback to make your local copy of the
change disappear, but it won't have the consequences you want. The change will still be present in the remote repository,
so it will reappear in your local repository the next time you pull.

If asituation like this arises, and you know which repositories your bad change has propagated into, you can try to get rid
of the change from every one of those repositories. Thisis, of course, not a satisfactory solution: if you miss even asingle
repository while you're expunging, the changeis still “in the wild”, and could propagate further.

91

Finding and fixing mistakes

If you've committed one or more changes after the change that you'd liketo see disappear, your options are further reduced.
Mercurial doesn't provide away to “punch ahole” in history, leaving changesets intact.

9.4.1. Backing out a merge

Since merges are often complicated, it is not unheard of for a merge to be mangled badly, but committed erroneously.
Mercurial provides animportant saf eguard against bad merges by refusing to commit unresolved files, but human ingenuity
guarantees that it is still possible to mess a merge up and commit it.

Given a bad merge that has been committed, usually the best way to approach it isto ssimply try to repair the damage by
hand. A complete disaster that cannot be easily fixed up by hand ought to be very rare, but the hg backout command may
help in making the cleanup easier. It offersa - - par ent option, which lets you specify which parent to revert to when
backing out a merge.

Figure 9.5. A bad merge

w 3: your change
4: bad merge

Suppose we have arevision graph like that in Figure 9.5, “ A bad merge”. What we'd likeisto redo the merge of revisions
2and 3.

One way to do so would be as follows.

1. Call hg backout --rev=4 --parent=2. This tells hg backout to back out revision 4, which is the bad merge, and to
when deciding which revision to prefer, to choose parent 2, one of the parents of the merge. The effect can be seenin
Figure 9.6, “Backing out the merge, favoring one parent”.

92

Finding and fixing mistakes

Figure 9.6. Backing out the mer ge, favoring one par ent

--parent=2

6: backout 1 of

5: new change
bad merge g

2. Call hg backout --rev=4 --parent=3. Thistells hg backout to back out revision 4 again, but this time to choose parent
3, the other parent of the merge. Theresult isvisiblein Figure 9.7, “Backing out the merge, favoring the other parent”,
in which the repository now contains three heads.

Figure 9.7. Backing out the merge, favoring the other parent

bad merge

--parent=2 --parent=3
Y <
6: backout 1 of 8: backout 2 of

bad merge

93

Finding and fixing mistakes

3. Redo the bad merge by merging the two backout heads, which reduces the number of heads in the repository to two,
as can be seen in Figure 9.8, “Merging the backouts’.

Figure 9.8. Merging the backouts

--parent=2 --parent=3
4
6: backout 1 of 7: backout 2 of
bad merge bad merge
8: merge

of backouts

4. Merge with the commit that was made after the bad merge, as shown in Figure 9.9, “Merging the backouts”.

94

Finding and fixing mistakes

Figure9.9. Merging the backouts

—
Q new change \

8: merge
of backouts

9: merge with
new change

9.4.2. Protect yourself from “escaped” changes

If you've committed some changes to your local repository and they've been pushed or pulled somewhere else, thisisn't
necessarily a disaster. You can protect yourself ahead of time against some classes of bad changeset. This is particularly
easy if your team usually pulls changes from a central repository.

By configuring some hooks on that repository to validate incoming changesets (see chapter Chapter 10, Handling repository
events with hooks), you can automatically prevent some kinds of bad changeset from being pushed to the central repository
at all. With such a configuration in place, some kinds of bad changeset will naturally tend to “die out” because they can't
propagate into the central repository. Better yet, this happens without any need for explicit intervention.

For instance, an incoming change hook that verifies that a changeset will actually compile can prevent people from
inadvertently “breaking the build”.

95

Finding and fixing mistakes

9.4.3. What to do about sensitive changes that escape

Even a carefully run project can suffer an unfortunate event such as the committing and uncontrolled propagation of afile
that contains important passwords.

If something like this happens to you, and the information that gets accidentally propagated is truly sensitive, your first
step should be to mitigate the effect of the leak without trying to control the leak itself. If you are not 100% certain that
you know exactly who could have seen the changes, you should immediately change passwords, cancel credit cards, or
find some other way to make sure that the information that has leaked is no longer useful. In other words, assume that the
change has propagated far and wide, and that there's nothing more you can do.

Y ou might hope that there would be mechanisms you could use to either figure out who has seen a change or to erase the
change permanently everywhere, but there are good reasons why these are not possible.

Mercurial does not provide an audit trail of who has pulled changesfrom arepository, becauseitisusually either impossible
to record such information or trivial to spoof it. In a multi-user or networked environment, you should thus be extremely
skeptical of yourself if you think that you have identified every place that a sensitive changeset has propagated to. Don't
forget that people can and will send bundles by email, have their backup software save data offsite, carry repositories on
USB sticks, and find other completely innocent ways to confound your attempts to track down every copy of aproblematic
change.

Mercurial also does not provide a way to make a file or changeset completely disappear from history, because there is
no way to enforce its disappearance; someone could easily modify their copy of Mercurial to ignore such directives. In
addition, even if Mercuria provided such a capability, someone who simply hadn't pulled a “make this file disappear”
changeset wouldn't be affected by it, nor would web crawlersvisiting at thewrong time, disk backups, or other mechanisms.
Indeed, no distributed revision control system can make data reliably vanish. Providing theillusion of such control could
easily give afalse sense of security, and be worse than not providing it at all.

9.5. Finding the source of a bug

Whileit'sall very well to be ableto back out a changeset that introduced abug, thisrequires that you know which changeset
to back out. Mercuria provides an invaluable command, called hg bisect, that helps you to automate this process and
accomplish it very efficiently.

The ideabehind the hg bisect command is that a changeset has introduced some change of behavior that you can identify
with a simple pass/fail test. You don't know which piece of code introduced the change, but you know how to test for
the presence of the bug. The hg bisect command uses your test to direct its search for the changeset that introduced the
code that caused the bug.

Here are afew scenarios to help you understand how you might apply this command.

» The most recent version of your software has a bug that you remember wasn't present a few weeks ago, but you don't
know when it was introduced. Here, your binary test checks for the presence of that bug.

» You fixed abug in arush, and now it's time to close the entry in your team's bug database. The bug database requires
a changeset ID when you close an entry, but you don't remember which changeset you fixed the bug in. Once again,
your binary test checks for the presence of the bug.

» Your software works correctly, but runs 15% slower than the last time you measured it. Y ou want to know which
changeset introduced the performance regression. In this case, your binary test measures the performance of your
software, to see whether it's “fast” or “slow”.

» The sizes of the components of your project that you ship exploded recently, and you suspect that something changed
in the way you build your project.

From these examples, it should be clear that the hg bisect command is not useful only for finding the sources of bugs. Y ou
can use it to find any “emergent property” of arepository (anything that you can't find from a simple text search of the
filesin the treg) for which you can write a binary test.

96

Finding and fixing mistakes

Well introducealittle bit of terminology here, just to makeit clear which parts of the search process are your responsibility,
and which are Mercuria's. A test issomething that you run when hg bisect chooses a changeset. A probeiswhat hg bisect
runs to tell whether arevision is good. Finally, we'll use the word “bisect”, as both a noun and a verb, to stand in for the
phrase “search using the hg bisect command”.

One simple way to automate the searching process would be simply to probe every changeset. However, this scales poorly.
If it took ten minutes to test a single changeset, and you had 10,000 changesets in your repository, the exhaustive approach
would take on average 35 daysto find the changeset that introduced a bug. Even if you knew that the bug was introduced
by one of the last 500 changesets, and limited your search to those, you'd still be looking at over 40 hours to find the
changeset that introduced your bug.

What the hg bisect command doesis use its knowledge of the “ shape” of your project's revision history to perform asearch
in time proportional to the logarithm of the number of changesets to check (the kind of search it performsis called a
dichotomic search). With this approach, searching through 10,000 changesets will take less than three hours, even at ten
minutes per test (the search will require about 14 tests). Limit your search to the last hundred changesets, and it will take
only about an hour (roughly seven tests).

The hg bisect command is aware of the “branchy” nature of a Mercurial project's revision history, so it has no problems

dealing with branches, merges, or multiple headsin arepository. It can prune entire branches of history with asingle probe,
which ishow it operates so efficiently.

9.5.1. Using the hg bisect command
Here's an example of hg bisect in action.
Note

Inversions0.9.5and earlier of Mercurial, hg bisect wasnot acore command: it was distributed with Mercurial
as an extension. This section describes the built-in command, not the old extension.

Now let's create a repository, so that we can try out the hg bisect command in isolation.

$ hg init mybug
$ cd nybug

Welll simulate a project that has a bug in it in a simple-minded way: create trivial changes in aloop, and nominate one
specific change that will have the “bug”. Thisloop creates 35 changesets, each adding a single file to the repository. Welll
represent our “bug” with afile that contains the text “i have agub”.

$ buggy_change=22

$ for ((i =0; i <35; i++)); do

> if [[$i = $buggy_change]]; then

> echo 'i have a gub' > nyfile$

> hg conmt -q -A -m'buggy changeset

> el se

> echo 'nothing to see here, nove along' > nyfile$
> hg conmit -q -A -m'nornmal changeset

> fi

> done

The next thing that we'd like to do is figure out how to use the hg bisect command. We can use Mercuria's normal built-
in help mechanism for this.

$ hg hel p bisect
hg bisect [-gbsr] [-U [-c CMD] [REV]

subdi vi si on search of changesets

This comand hel ps to find changesets which introduce problens. To use
mark the earliest changeset you know exhibits the problem as bad, then
mark the | atest changeset which is free fromthe probl emas good. Bisect
wi || update your working directory to a revision for testing (unless the
-U --noupdate option is specified). Once you have perforned tests, nark

97

Finding and fixing mistakes

the working directory as good or bad, and bisect will either update to
anot her candi date changeset or announce that it has found the bad
revision

As a shortcut, you can also use the revision argunent to mark a revision
as good or bad without checking it out first

If you supply a command, it will be used for automatic bisection. Its exit
status will be used to mark revisions as good or bad: status O neans good
125 nmeans to skip the revision, 127 (comand not found) will abort the
bi secti on, and any other non-zero exit status neans the revision is bad

Returns 0 on success

opti ons

-r --reset reset bisect state

-g --good mar k changeset good

-b --bad mar k changeset bad

-s --skip skip testing changeset

-c --command CMD use command to check changeset state
-U --noupdat e do not update to target

use "hg -v help bisect" to show gl obal options

The hg bisect command works in steps. Each step proceeds as follows.

1. You runyour binary test.
« If thetest succeeded, you tell hg bisect by running the hg bisect --good command.
« If it failed, run the hg bisect --bad command.

2. The command uses your information to decide which changeset to test next.

3. It updates the working directory to that changeset, and the process begins again.

The process ends when hg bisect identifies a unique changeset that marks the point where your test transitioned from
“succeeding” to “failing”.

To start the search, we must run the hg bisect --reset command.

|6 hg bisect --reset

In our case, the binary test we use is ssimple: we check to seeif any filein the repository containsthe string “i have agub”.
If it does, this changeset contains the change that “ caused the bug”. By convention, a changeset that has the property we're
searching for is “bad”, while one that doesn't is “good”.

Most of the time, the revision to which the working directory is synced (usually the tip) already exhibits the problem
introduced by the buggy change, so we'll mark it as“bad”.

|6 hg bisect --bad

Our next task is to nominate a changeset that we know doesn't have the bug; the hg bisect command will “bracket” its
search between the first pair of good and bad changesets. In our case, we know that revision 10 didn't have the bug. (I'll
have more words about choosing the first “good” changeset |ater.)

$ hg bisect --good 10
Testing changeset 22:344ed939517e (24 changesets remaining, ~4 tests)
O files updated, O files nmerged, 12 files renoved, O files unresol ved

Notice that this command printed some output.

« It told us how many changesets it must consider before it can identify the one that introduced the bug, and how many
tests that will require.

98

Finding and fixing mistakes

« It updated the working directory to the next changeset to test, and told us which changeset it's testing.

We now run our test in the working directory. We use the grep command to seeif our “bad” fileis present in the working
directory. If it is, thisrevision is bad; if not, thisrevision is good.

$ if grep -q 'i have a gub' *

> t hen

> resul t =bad

> el se

> resul t =good

> fi

$ echo this revision is $result

this revision is bad

$ hg bisect --$result

Testi ng changeset 16:59495442c31c (12 changesets renmining, ~3 tests)
O files updated, O files nmerged, 6 files renmoved, O files unresol ved

Thistest looks like a perfect candidate for automation, so let'sturn it into a shell function.

$ nytest() {
if grep -q 'i have a gub' *
t hen
resul t =bad
el se
resul t =good
f
echo this revision is $result
hg bisect --$result

VVVVVVYVVYV

}

We can now run an entire test step with asingle command, myt est .

$ nytest

this revision is good

Testing changeset 19: 4f3c7b27a78b (6 changesets remaining, ~2 tests)
3 files updated, O files nmerged, O files renoved, O files unresol ved

A few more invocations of our canned test step command, and we're done.

$ nytest

this revision is good

Testing changeset 20: 150b7bb0de8d (3 changesets remaining, ~1 tests)
1 files updated, O files nerged, O files renoved, O files unresol ved
$ nytest

this revision is good

Testing changeset 21:07228a96b8f7 (2 changesets remaining, ~1 tests)
1 files updated, O files nerged, O files renoved, O files unresol ved
$ nytest

this revision is good

The first bad revision is

changeset : 22: 344ed939517e

user: Bryan O Sul | i van <bos@er penti ne. con»
dat e: Mon Nov 01 23:57:37 2010 +0000
sunmary: buggy changeset

Even though we had 40 changesets to search through, the hg bisect command let us find the changeset that introduced
our “bug” with only five tests. Because the number of tests that the hg bisect command performs grows logarithmically
with the number of changesets to search, the advantage that it has over the “brute force” search approach increases with
every changeset you add.

9.5.2. Cleaning up after your search

When you're finished using the hg bisect command in arepository, you can use the hg bisect --r eset command to drop the
information it was using to drive your search. The command doesn't use much space, so it doesn't matter if you forget to
run this command. However, hg bisect won't let you start anew search in that repository until you do ahg bisect --reset.

|6 hg bisect --reset

99

Finding and fixing mistakes

9.6. Tips for finding bugs effectively

9.6.1. Give consistent input

The hg bisect command requires that you correctly report the result of every test you perform. If you tell it that atest failed
when it really succeeded, it might be able to detect the inconsistency. If it can identify an inconsistency in your reports,
it will tell you that a particular changeset is both good and bad. However, it can't do this perfectly; it's about as likely to
report the wrong changeset as the source of the bug.

9.6.2. Automate as much as possible

When | started using the hg bisect command, | tried afew timesto run my tests by hand, on the command line. Thisisan
approach that 1, at least, am not suited to. After afew tries, | found that | was making enough mistakes that | was having
to restart my searches several times before finally getting correct results.

My initial problemswith driving the hg bisect command by hand occurred even with simple searches on small repositories;
if the problem you're looking for is more subtle, or the number of teststhat hg bisect must perform increases, the likelihood
of operator error ruining the search is much higher. Once | started automating my tests, | had much better results.

The key to automated testing is twofold:
» awaystest for the same symptom, and
» aways feed consistent input to the hg bisect command.

In my tutorial example above, the grep command tests for the symptom, andthei f statement takes the result of this check
and ensures that we always feed the same input to the hg bisect command. The nyt est function marries these together
in areproducible way, so that every test is uniform and consistent.

9.6.3. Check your results

Because the output of a hg bisect search is only as good as the input you give it, don't take the changeset it reports as the
absolute truth. A simple way to cross-check its report isto manually run your test at each of the following changesets:

* The changeset that it reports as the first bad revision. Y our test should still report this as bad.
» The parent of that changeset (either parent, if it'samerge). Y our test should report this changeset as good.

» A child of that changeset. Y our test should report this changeset as bad.

9.6.4. Beware interference between bugs

It's possiblethat your search for one bug could be disrupted by the presence of another. For example, let's say your software
crashes at revision 100, and worked correctly at revision 50. Unknown to you, someone €l seintroduced a different crashing
bug at revision 60, and fixed it at revision 80. This could distort your resultsin one of several ways.

It is possible that this other bug completely “masks’ yours, which is to say that it occurs before your bug has a chance
to manifest itself. If you can't avoid that other bug (for example, it prevents your project from building), and so can't tell
whether your bug is present in a particular changeset, the hg bisect command cannot help you directly. Instead, you can
mark a changeset as untested by running hg bisect --skip.

A different problem could arise if your test for a bug's presence is not specific enough. If you check for “my program
crashes’, then both your crashing bug and an unrelated crashing bug that masksit will 1ook like the same thing, and mislead
hg bisect.

Another useful situation in which to use hg bisect --skip isif you can't test arevision because your project wasin abroken
and hence untestable state at that revision, perhaps because someone checked in a change that prevented the project from
building.

100

Finding and fixing mistakes

9.6.5. Bracket your search lazily

Choosing the first “good” and “bad” changesets that will mark the end points of your search is often easy, but it bears a
little discussion nevertheless. From the perspective of hg bisect, the “newest” changeset is conventionally “bad”, and the
older changeset is“good”.

If you're having trouble remembering when a suitable “good” change was, so that you can tell hg bisect, you could do
worse than testing changesets at random. Just remember to eliminate contendersthat can't possibly exhibit the bug (perhaps
because the feature with the bug isn't present yet) and those where another problem masks the bug (as | discussed above).

Even if you end up “early” by thousands of changesets or months of history, you will only add a handful of tests to the
total number that hg bisect must perform, thanksto its logarithmic behavior.

101

Chapter 10. Handling repository events
with hooks

Mercurial offersapowerful mechanismtolet you perform automated actionsin responseto eventsthat occur in arepository.
In some cases, you can even control Mercurial's response to those events.

The name Mercurial uses for one of these actionsis ahook. Hooks are called “triggers’ in some revision control systems,
but the two names refer to the same idea.

10.1. An overview of hooks in Mercurial

Here is a brief list of the hooks that Mercurial supports. We will revisit each of these hooks in more detail later, in
Section 10.7, “Information for writers of hooks’.

Each of the hooks whose description beginswith theword “ Controlling” hasthe ability to determine whether an activity can
proceed. If the hook succeeds, the activity may proceed; if it fails, the activity is either not permitted or undone, depending
on the hook.

» changegr oup: Thisisrun after agroup of changesets has been brought into the repository from elsewhere.

e conm t : Thisisrun after a new changeset has been created in the local repository.

e i ncom ng: Thisisrun once for each new changeset that is brought into the repository from elsewhere. Notice the
difference from changegr oup, which is run once per group of changesets brought in.

* out goi ng: Thisisrun after agroup of changesets has been transmitted from this repository.

e prechangegr oup: Thisisrun before starting to bring a group of changesets into the repository.

e preconmi t: Controlling. Thisisrun before starting a commit.

e preout goi ng: Controlling. Thisis run before starting to transmit a group of changesets from this repository.
» pretag: Controlling. Thisisrun before creating atag.

* pret xnchangegr oup: Controlling. Thisisrun after agroup of changesets has been brought into the local repository
from another, but before the transaction completes that will make the changes permanent in the repository.

e pretxnconmit: Controlling. Thisis run after anew changeset has been created in the local repository, but before the
transaction completes that will make it permanent.

* preupdat e: Controlling. Thisisrun before starting an update or merge of the working directory.
e tag: Thisisrun after atag iscreated.

» updat e: Thisisrun after an update or merge of the working directory has finished.

10.2. Hooks and security

10.2.1. Hooks are run with your privileges

When you runaMercurial command in arepository, and the command causes ahook to run, that hook runson your system,
under your user account, with your privilege level. Since hooks are arbitrary pieces of executable code, you should treat
them with an appropriate level of suspicion. Do not install a hook unless you are confident that you know who created
it and what it does.

102

Handling repository events with hooks

In some cases, you may be exposed to hooks that you did not install yourself. If you work with Mercurial on an unfamiliar
system, Mercurial will run hooks defined in that system'sglobal ~/ . hgr c file.

If you are working with a repository owned by another user, Mercurial can run hooks defined in that user's repository,
but it will still run them as “you”. For example, if you hg pull from that repository, and its . hg/ hgr ¢ defines a local
out goi ng hook, that hook will run under your user account, even though you don't own that repository.

Note

Thisonly appliesif you are pulling from arepository on alocal or network filesystem. If you're pulling over
http or ssh, any out goi ng hook will run under whatever account is executing the server process, on the
server.

To seewhat hooksare defined in arepository, use the hg showconfig hooks command. If you areworking in onerepository,
but talking to another that you do not own (e.g. using hg pull or hg incoming), remember that it is the other repository's
hooks you should be checking, not your own.

10.2.2. Hooks do not propagate

InMercurial, hooks are not revision controlled, and do not propagate when you clone, or pull from, arepository. Thereason
for thisis simple: a hook is a completely arbitrary piece of executable code. It runs under your user identity, with your
privilege level, on your machine.

It would be extremely reckless for any distributed revision control system to implement revision-controlled hooks, as this
would offer an easily exploitable way to subvert the accounts of users of the revision control system.

Since Mercurial does not propagate hooks, if you are collaborating with other people on a common project, you should
not assume that they are using the same Mercurial hooks as you are, or that theirs are correctly configured. Y ou should
document the hooks you expect people to use.

In a corporate intranet, this is somewhat easier to control, as you can for example provide a “standard” installation of
Mercurial on an NFS filesystem, and use a site-wide ~/ . hgr c file to define hooks that all users will see. However, this
too hasits limits; see below.

10.2.3. Hooks can be overridden

Mercurial alows you to override a hook definition by redefining the hook. Y ou can disable it by setting its value to the
empty string, or change its behavior as you wish.

If you deploy a system- or site-wide ~/ . hgr c file that defines some hooks, you should thus understand that your users
can disable or override those hooks.

10.2.4. Ensuring that critical hooks are run

Sometimes you may want to enforce apolicy that you do not want othersto be able to work around. For example, you may
have arequirement that every changeset must passarigorous set of tests. Defining thisrequirement viaahook in asite-wide
~/ . hgr ¢ won't work for remote users on laptops, and of course local users can subvert it at will by overriding the hook.

Instead, you can set up your policies for use of Mercurial so that people are expected to propagate changes through awell-
known “canonical” server that you have locked down and configured appropriately.

One way to do thisis via a combination of social engineering and technology. Set up a restricted-access account; users
can push changes over the network to repositories managed by this account, but they cannot log into the account and run
normal shell commands. In this scenario, a user can commit a changeset that contains any old garbage they want.

When someone pushes achangeset to the server that everyone pullsfrom, the server will test the changeset before it accepts
it as permanent, and reject it if it fails to pass the test suite. If people only pull changes from this filtering server, it will
serve to ensure that all changes that people pull have been automatically vetted.

103

Handling repository events with hooks

10.3. A short tutorial on using hooks

Itiseasy to write aMercurial hook. Let's start with a hook that runs when you finish a hg commit, and simply prints the
hash of the changeset you just created. The hook is called commi t .

All hooks follow the pattern in this example.

hg init hook-test

cd hook-test

echo '[hooks]' >> .hg/hgrc

echo 'commt = echo commtted $HG NODE' >> . hg/hgrc
cat .hg/hgrc

[hooks]

commit = echo committed $HG NODE

$ echo a > a

$ hg add a

$ hg conmit -m'testing commt hook

conmi tted 86851943a4bf 3d526e16d51cf 29ec03306ealdcf

LR R R R

You add an entry to the hooks section of your ~/ . hgr c. On theleft isthe name of the event to trigger on; ontheright is
the action to take. Asyou can see, you can run an arbitrary shell command in a hook. Mercuria passes extra information
to the hook using environment variables (look for HG_NODE in the example).

10.3.1. Performing multiple actions per event

Quite often, you will want to define more than one hook for a particular kind of event, as shown below.

$ echo 'commit.when = echo -n "date of commit: "; date' >> .hg/hgrc
$ echo a >> a

$ hg conmit -m'i have two hooks

commi tted 60b16a21589dbed7c102f c17d3f d4f b5f d4f 96b3

date of commit: Mon Nov 1 23:58:15 GMI 2010

Mercurial lets you do this by adding an extension to the end of a hook's name. Y ou extend a hook's name by giving the
name of the hook, followed by afull stop (the“. " character), followed by some more text of your choosing. For example,
Mercurial will run bothconmi t . f oo and conmi t . bar whentheconmi t event occurs.

To give awell-defined order of execution when there are multiple hooks defined for an event, Mercuria sorts hooks by
extension, and executes the hook commands in this sorted order. In the above example, it will execute commi t . bar
beforecommi t . f 00, and conmi t before both.

It is a good idea to use a somewhat descriptive extension when you define a new hook. This will help you to remember
what the hook was for. If the hook fails, you'll get an error message that contains the hook name and extension, so using a
descriptive extension could give you an immediate hint asto why the hook failed (see Section 10.3.2, “ Controlling whether
an activity can proceed” for an example).

10.3.2. Controlling whether an activity can proceed

In our earlier examples, we used the conmi t hook, which is run after a commit has completed. This is one of several
Mercurial hooks that run after an activity finishes. Such hooks have no way of influencing the activity itself.

Mercurial defines a number of eventsthat occur before an activity starts; or after it starts, but before it finishes. Hooks that
trigger on these events have the added ability to choose whether the activity can continue, or will abort.

The pr et xnconmi t hook runs after a commit has all but completed. In other words, the metadata representing the
changeset has been written out to disk, but the transaction has not yet been allowed to complete. The pr et xncommi t
hook has the ability to decide whether the transaction can complete, or must be rolled back.

If thepr et xnconmmi t hook exits with a status code of zero, the transaction is allowed to complete; the commit finishes;
andtheconmi t hook isrun. If thepr et xnconmi t hook exitswith anon-zero status code, the transaction isrolled back;
the metadata representing the changeset is erased; and the conmi t hook is not run.

|6 cat check_bug_id

104

Handling repository events with hooks

#! / bi n/ sh

check that a commit comment nentions a nuneric bug id

hg log -r $1 --tenplate {desc} | grep -q "\<bug *[0-9]"

$ echo 'pretxncommt.bug id required = ./check_bug id $HG NODE' >> . hg/hgrc
$ echo a >> a

$ hg commit -m'i amnot nentioning a bug id'

transaction abort!

rol | back conpl et ed

abort: pretxncommit.bug_id_required hook exited with status 1
$ hg commit -m'i refer you to bug 666

commi tted 576bdabf c955c268d5¢1018d198bf 86655de53a7

date of commit: Mon Nov 1 23:58:15 GMI 2010

The hook in the example above checks that a commit comment contains a bug ID. If it does, the commit can complete.
If not, the commit is rolled back.

10.4. Writing your own hooks

When you are writing a hook, you might find it useful to run Mercurial either with the - v option, or thever bose config
item set to “true”. When you do so, Mercuria will print a message before it calls each hook.

10.4.1. Choosing how your hook should run

Y ou can write ahook either asanormal program—typically ashell script—or as a Python function that is executed within
the Mercuria process.

Writing a hook as an external program has the advantage that it requires no knowledge of Mercurial's internals. Y ou can
call normal Mercurial commands to get any added information you need. The trade-off is that external hooks are slower
than in-process hooks.

An in-process Python hook has complete access to the Mercurial API, and does not “shell out” to another process, so it
isinherently faster than an external hook. It is also easier to obtain much of the information that a hook requires by using
the Mercurial API than by running Mercurial commands.

If you are comfortable with Python, or require high performance, writing your hooks in Python may be a good choice.
However, when you have a straightforward hook to write and you don't need to care about performance (probably the
majority of hooks), ashell script is perfectly fine.

10.4.2. Hook parameters

Mercurial calls each hook with a set of well-defined parameters. In Python, a parameter is passed as a keyword argument
to your hook function. For an external program, a parameter is passed as an environment variable.

Whether your hook iswritten in Python or asashell script, the hook-specific parameter names and values will be the same.
A boolean parameter will be represented as a boolean value in Python, but as the number 1 (for “true”) or O (for “false”)
as an environment variable for an external hook. If a hook parameter is named f 0o, the keyword argument for a Python
hook will also be named f oo, while the environment variable for an external hook will be named HG_FOO.

10.4.3. Hook return values and activity control

A hook that executes successfully must exit with astatus of zero if external, or return boolean “false” if in-process. Failure
is indicated with a non-zero exit status from an external hook, or an in-process hook returning boolean “true’. If an in-
process hook raises an exception, the hook is considered to have failed.

For a hook that controls whether an activity can proceed, zero/false means “allow”, while non-zero/true/exception means
“ der]yu .

10.4.4. Writing an external hook

When you define an external hook inyour ~/ . hgr ¢ and the hook isrun, itsvalueis passed to your shell, which interprets
it. This means that you can use normal shell constructs in the body of the hook.

105

Handling repository events with hooks

An executable hook is always run with its current directory set to arepository's root directory.
Each hook parameter is passed in as an environment variable; the nameis upper-cased, and prefixed with the string “HG _".

With the exception of hook parameters, Mercurial does not set or modify any environment variables when running a hook.
Thisisuseful to remember if you are writing asite-wide hook that may be run by anumber of different userswith differing
environment variables set. In multi-user situations, you should not rely on environment variables being set to the values
you have in your environment when testing the hook.

10.4.5. Telling Mercurial to use an in-process hook

The ~/ . hgr ¢ syntax for defining an in-process hook is dlightly different than for an executable hook. The value of the
hook must start with the text “pyt hon: ”, and continue with the fully-qualified name of a callable object to use as the
hook's value.

The module in which a hook lives is automatically imported when a hook is run. So long as you have the module name
and PYTHONPATH right, it should “just work”.

Thefollowing ~/ . hgr ¢ example snippet illustrates the syntax and meaning of the notions we just described.

[hooks]
commi t. exanpl e = pyt hon: nynodul e. subnodul e. nyhook

When Mercurial runs the commi t . exanpl e hook, it imports nynodul e. subnodul e, looks for the callable object
named myhook, and callsit.

10.4.6. Writing an in-process hook

The simplest in-process hook does nothing, but illustrates the basic shape of the hook API:;

def nyhook(ui, repo, **kwargs)
pass

Thefirst argument to a Python hook isalwaysaui object. The second isarepository object; at the moment, it isawaysan
instanceof | ocal r eposi t or y. Following these two arguments are other keyword arguments. Which onesare passed in
depends on the hook being called, but a hook can ignore arguments it doesn't care about by dropping them into a keyword
argument dict, aswith * * kwar gs above.

10.5. Some hook examples

10.5.1. Writing meaningful commit messages

It's hard to imagine a useful commit message being very short. The smple pr et xncommi t hook of the example below
will prevent you from committing a changeset with a message that isless than ten bytes long.

$ cat .hg/hgrc

[hooks]

pretxncommit.nsglen = test "hg tip --tenplate {desc} | wc -¢c* -ge 10
$ echo a > a

$ hg add a

$ hg commit -A -m'too short

transacti on abort

rol | back conpl et ed

abort: pretxncommit. nsglen hook exited with status 1

$ hg commit -A -m'long enough

10.5.2. Checking for trailing whitespace

An interesting use of a commit-related hook is to help you to write cleaner code. A simple example of “cleaner code” is
the dictum that a change should not add any new lines of text that contain “trailing whitespace”. Trailing whitespaceis a

106

Handling repository events with hooks

series of space and tab characters at the end of aline of text. In most cases, trailing whitespace is unnecessary, invisible
noise, but it is occasionally problematic, and people often prefer to get rid of it.

You can use either the pr ecommi t or pr et xnconm t hook to tell whether you have a trailing whitespace problem.
If you use the pr ecomi t hook, the hook will not know which files you are committing, so it will have to check every
modified file in the repository for trailing white space. If you want to commit a change to just the file f oo, but the file
bar contains trailing whitespace, doing a check in the pr econmi t hook will prevent you from committing f oo dueto
the problem with bar . This doesn't seem right.

Should you choose the pr et xnconmi t hook, the check won't occur until just before the transaction for the commit
completes. Thiswill allow you to check for problems only the exact filesthat are being committed. However, if you entered
the commit message interactively and the hook fails, the transaction will roll back; you'll have to re-enter the commit
message after you fix the trailing whitespace and run hg commit again.

$ cat .hg/hgrc

[hooks]

pretxnconmi t. whi tespace = hg export tip | (! egrep -g '+ *[\t]$")
$ echo 'a' > a

$ hg conmit -A -m'test with trailing whitespace

adding a

transacti on abort

rol | back conpl et ed

abort: pretxncommit.whitespace hook exited with status 1
$ echo 'a' > a

$ hg conmit -A -m'drop trailing whitespace and try again

In this example, we introduce asimple pr et xnconmi t hook that checks for trailing whitespace. This hook is short, but
not very helpful. It exits with an error status if a change adds a line with trailing whitespace to any file, but does not print
any information that might help usto identify the offending file or line. It also has the nice property of not paying attention
to unmodified lines; only lines that introduce new trailing whitespace cause problems.

#!/ usr/ bin/ env python
it
save as .hg/check_whitespace. py and nake executabl e

i mport re
def trailing_whitespace(difflines):
#

l'i nenum header = 0, False

for line in difflines:

if header:
remenber the name of the file that this diff affects
m=re.match(r' (?:---|\H\+\+) ([MNt]+)', line)
if mand mgroup(1l) != "/dev/null'

filename = mgroup(1).split('/", 1)[-1]
if line.startswith('+++ ")
header = Fal se
conti nue
if line.startswith('diff "):
header = True

conti nue
hunk header - save the line nunber
m=re.match(r' @-\d+,\d+ \+(\d+),"', line)
if m
linenum = int(mgroup(l))
conti nue
hunk body - check for an added line with trailing whitespace
m=re.match(r'\+. *\s$', line)
if m
yield filename, |inenum

if line and line[0] in ' +':
linenum += 1

if _name__ =="'__main

import os, s§§

added = 0

107

Handling repository events with hooks

for filename, linenumin trailing_whitespace(os.popen('hg export tip')):
print >> sys.stderr, ('%, line %: trailing whitespace added %
(filenanme, |inenunj)
added += 1
if added

save the commt nessage so we don't need to retype it
os.system('hg tip --tenplate "{desc}" > .hg/conmmt.save')
print >> sys.stderr, 'comit nessage saved to .hg/conmt.save
sys.exit(1)

The above version is much more complex, but also more useful. It parses a unified diff to see if any lines add trailing
whitespace, and prints the name of the file and the line number of each such occurrence. Even better, if the change adds
trailing whitespace, this hook saves the commit comment and prints the name of the save file before exiting and telling
Mercurial to roll the transaction back, so you can usethe-1 fi | enane option to hg commit to reuse the saved commit
message once you've corrected the problem.

$ cat .hg/hgrc

[hooks]

pret xnconmmi t . whi t espace = . hg/check_whitespace. py

$ echo "a ' >> a

$ hg conmmit -A -m'add newline with trailing whitespace
a, line 2: trailing whitespace added

comit nessage saved to .hg/commit.save

transacti on abort

rol | back conpl et ed

abort: pretxncommit.whitespace hook exited with status 1

$ sed -i 's, *$,,' a
$ hg commit -A -m'trimed trailing whitespace
a, line 2: trailing whitespace added

commit nmessage saved to .hg/commit.save

transacti on abort

rol | back conpl et ed

abort: pretxncommit.whitespace hook exited with status 1

Asafinal aside, notein the example above the use of sed's in-place editing feature to get rid of trailing whitespace from a
file. Thisis concise and useful enough that | will reproduce it here (using perl for good measure).

perl -pi -e 's,\s+$,,' filenane |

10.6. Bundled hooks

Mercurial shipswith several bundled hooks. You can find them in the hgext directory of aMercurial sourcetree. If you
areusing aMercurial binary package, the hookswill belocated inthehgext directory of wherever your package installer
put Mercurial.

10.6.1. acl —access control for parts of a repository

The acl extension lets you control which remote users are allowed to push changesets to a networked server. You can
protect any portion of arepository (including the entire repo), so that a specific remote user can push changes that do not
affect the protected portion.

This extension implements access control based on the identity of the user performing a push, not on who committed
the changesets they're pushing. It makes sense to use this hook only if you have a locked-down server environment that
authenti cates remote users, and you want to be sure that only specific users are allowed to push changesto that server.

10.6.1.1. Configuring the acl hook

In order to manage incoming changesets, the acl hook must be used asa pr et xnchangegr oup hook. Thisletsit see
which files are modified by each incoming changeset, and roll back a group of changesets if they modify “forbidden”
files. Example:

[hooks]
pr et xnchangegr oup. acl = pyt hon: hgext. acl . hook

Theacl extensionis configured using three sections.

108

Handling repository events with hooks

Theacl section hasonly one entry, sour ces, which lists the sources of incoming changesets that the hook should pay
attention to. Y ou don't normally need to configure this section.

» ser ve: Control incoming changesetsthat are arriving from aremote repository over http or ssh. Thisisthe default value
of sour ces, and usually the only setting you'll need for this configuration item.

e pul I : Control incoming changesets that are arriving viaa pull from alocal repository.

« push: Control incoming changesets that are arriving viaa push from alocal repository.

e bundl e: Control incoming changesets that are arriving from another repository viaabundle.

The acl . al | ow section controls the users that are allowed to add changesets to the repository. If this section is not
present, all usersthat are not explicitly denied are allowed. If this section is present, al usersthat are not explicitly allowed

are denied (so an empty section means that all users are denied).

Theacl . deny section determines which users are denied from adding changesets to the repository. If this section is not
present or is empty, no users are denied.

The syntaxes for theacl . al | owand acl . deny sections are identical. On the left of each entry is a glob pattern that
matches files or directories, relative to the root of the repository; on the right, a user name.

In the following example, the user docwri t er can only push changes to the docs subtree of the repository, while
i nt er n can push changesto any file or directory except sour ce/ sensi ti ve.

[acl . al | ow]

docs/** = docwriter

[acl . deny]

source/ sensitive/** = intern

10.6.1.2. Testing and troubleshooting

If you want to test the acl hook, run it with Mercuria's debugging output enabled. Since you'll probably be running it
on a server where it's not convenient (or sometimes possible) to pass in the - - debug option, don't forget that you can
enable debugging output in your ~/ . hgr c:

[ui]
debug = true

With thisenabled, theacl hook will print enough information to let you figure out why it isallowing or forbidding pushes
from specific users.

10.6.2. bugzi | | a—integration with Bugzilla

The bugzi | | a extension adds a comment to a Bugzilla bug whenever it finds a reference to that bug ID in a commit
comment. You can install this hook on a shared server, so that any time a remote user pushes changes to this server, the
hook getsrun.

It adds a comment to the bug that 1ooks like this (you can configure the contents of the comment—see below):

Changeset aad8b264143a, nade by Joe User

<j oe. user @omai n.con> in the frobnitz repository, refers

to this bug. For conplete details, see

http://hg. domai n. coni frobni t z?cnd=changeset ; node=aad8b264143a
Changeset description: Fix bug 10483 by guardi ng agai nst sone
NULL pointers

The value of this hook is that it automates the process of updating a bug any time a changeset refersto it. If you configure
the hook properly, it makesit easy for people to browse straight from a Bugzilla bug to a changeset that refersto that bug.

You can use the code in this hook as a starting point for some more exotic Bugzilla integration recipes. Here are a few
possibilities:

109

Handling repository events with hooks

* Requirethat every changeset pushed to the server have avalid bug 1D in its commit comment. In this case, you'd want to
configurethehook asapr et xncomm t hook. Thiswould allow the hook to reject changes that didn't contain bug 1Ds.

« Allow incoming changesetsto automatically modify the state of abug, aswell assimply adding acomment. For example,
the hook could recognise the string “fixed bug 31337” as indicating that it should update the state of bug 31337 to
“reguirestesting”.

10.6.2.1. Configuring the bugzi | | a hook

Y ou should configure this hook in your server's~/ . hgr ¢ asani ncom ng hook, for example as follows:

[hooks]
i ncom ng. bugzi |l a = pyt hon: hgext. bugzi | | a. hook

Because of the specialised nature of this hook, and because Bugzilla was not written with this kind of integration in mind,
configuring this hook is a somewhat involved process.

Before you begin, you must install the MySQL bindings for Python on the host(s) where you'll be running the hook. If this
is not available as abinary package for your system, you can download it from [web:mysgl-python].

Configuration information for this hook livesin thebugzi | | a section of your ~/ . hgrc.

» ver si on: Theversion of Bugzillainstalled on the server. The database schemathat Bugzilla uses changes occasionally,
so this hook has to know exactly which schemato use.

» host : The hostname of the MySQL server that stores your Bugzilla data. The database must be configured to allow
connections from whatever host you are running the bugzi | | a hook on.

e user : The username with which to connect to the MySQL server. The database must be configured to alow this user
to connect from whatever host you are running the bugzi | | a hook on. This user must be able to access and modify
Bugzillatables. The default value of thisitem is bugs, which is the standard name of the Bugzilla user in a MySQL
database.

» passwor d: The MySQL password for the user you configured above. Thisis stored as plain text, so you should make
sure that unauthorised users cannot read the ~/ . hgr ¢ file where you store this information.

» db: The name of the Bugzilla database on the MySQL server. The default value of this item is bugs, which is the
standard name of the MySQL database where Bugzilla stores its data.

* noti fy: If youwant Bugzillato send out a notification email to subscribers after this hook has added a comment to
a bug, you will need this hook to run a command whenever it updates the database. The command to run depends on
where you haveinstalled Bugzilla, but it will typically look something like this, if you have Bugzillainstalledin/ var /
www/ ht m / bugzi | | a:

cd /var/ww/ htm /bugzilla &
./ processnuail % nobody@owhere.com

e TheBugzillapr ocessnai | program expects to be given a bug ID (the hook replaces “%s” with the bug ID) and an
email address. It also expects to be able to write to some files in the directory that it runsin. If Bugzilla and this hook
are not installed on the same machine, you will need to find away to run pr ocessmai | on the server where Bugzilla
isinstalled.

10.6.2.2. Mapping committer names to Bugzilla user names

By default, the bugzi | | a hook tries to use the email address of a changeset's committer as the Bugzilla user name with
which to update a bug. If this does not suit your needs, you can map committer email addresses to Bugzilla user names
usingauser map section.

Eachitem in the user map section contains an email address on the left, and a Bugzilla user name on the right.

[user map]
j ane. user @xanpl e.com = j ane

110

Handling repository events with hooks

You can either keep the user map datain anorma ~/ . hgr c, or tell thebugzi | | a hook to read the information from
an external user map file. In the latter case, you can store user map data by itself in (for example) a user-modifiable
repository. This makes it possible to let your users maintain their own user map entries. The main ~/ . hgr c file might
look like this:

regular hgrc file refers to external usermap file
[bugzi |l | a]
usermap = / hone/ hg/ r epos/ userdat a/ bugzi | | a- user map. conf

Whiletheuser map filethat it refers to might look like this:

bugzilla-usermap.conf - inside a hg repository
[user map] stephani e@xanpl e. com = st eph

10.6.2.3. Configuring the text that gets added to a bug

Y ou can configure the text that this hook adds as a comment; you specify it in the form of a Mercuria template. Severa
~/ . hgr c entries (still inthebugzi | | a section) control this behavior.

e strip: The number of leading path elements to strip from a repository's path name to construct a partial path for a
URL. For example, if the repositories on your server live under / horre/ hg/ r epos, and you have arepository whose
pathis/ homre/ hg/ r epos/ app/ t est s, then setting st ri p to 4 will giveapartial path of app/ t est s. The hook
will make this partial path available when expanding atemplate, aswebr oot .

» tenpl at e: Thetext of the template to use. In addition to the usual changeset-related variables, this template can use
hgweb (the value of the hgweb configuration item above) and webr oot (the path constructed using st r i p above).

In addition, you can add abaseur | item to the web section of your ~/ . hgr c. The bugzi I | a hook will make this
available when expanding a template, as the base string to use when constructing a URL that will let users browse from
aBugzillacomment to view a changeset. Example:

[web]
baseur! = http://hg. donain. com

Hereisan example set of bugzi | | a hook config information.

[bugzi | | a]
host = bugzill a. exanpl e. com
password = nypassword version = 2.16
server-side repos live in /honme/hg/repos, so strip 4 |eading
separators
strip = 4
hgweb = http://hg. exanpl e. conl
usermap = / hone/ hg/ repos/ noti fy/ bugzill a. conf
t enpl at e = Changeset {node|short}, nmade by {author} in the {webroot}
repo, refers to this bug.\n
For conplete details, see
{ hgweb} {webr oot } ?2cnd=changeset ; node={ node| short}\n
Changeset description:\n
\t{desc| tabi ndent}

10.6.2.4. Testing and troubleshooting

The most common problems with configuring the bugzi I | a hook relate to running Bugzilla's pr ocessmai | script
and mapping committer names to user names.

Recall from Section 10.6.2.1, “ Configuring the bugzi | | a hook” above that the user that runs the Mercurial process on
the server is also the one that will run the pr ocessmai | script. The pr ocessmai | script sometimes causes Bugzilla
to write to files in its configuration directory, and Bugzilla's configuration files are usually owned by the user that your
web server runs under.

You can cause pr ocessmai | to be run with the suitable user's identity using the sudo command. Here is an example
entry for asudoer s file.

lhg_user = (httpd_user) |

111

Handling repository events with hooks

[INOPASSWD: / var / wwy ht m / bugzi | | a/ processmai | -w apper %

Thisallowsthehg_user usertorunaprocessnai | - w apper program under the identity of ht t pd_user.

Thisindirection through awrapper script is necessary, because pr ocessnai | expectsto be run with its current directory
set to wherever you installed Bugzilla; you can't specify that kind of constraint in asudoer s file. The contents of the
wrapper script are simple:

#! / bi n/ sh
cd “dirnane $0° && ./processmuil "$1" nobody@xanpl e. com

It doesn't seem to matter what email address you passto pr ocessnai | .

If your user nap isnot set up correctly, userswill seean error messagefromthebugzi | | a hook when they push changes
to the server. The error message will look like this:

kannot find bugzilla user id for john.q.public@xanple.com

What this means is that the committer's address, j ohn. g. publ i c@xanpl e. com isnot avalid Bugzilla user name,
nor does it have an entry in your user nmap that mapsit to avalid Bugzilla user name.

10.6.3. not i f y—send email notifications

Although Mercuria's built-in web server provides RSS feeds of changesin every repository, many people prefer to receive
change notifications via email. The not i fy hook lets you send out natifications to a set of email addresses whenever
changesets arrive that those subscribers are interested in.

Aswiththebugzi | | a hook, thenot i fy hook istemplate-driven, so you can customise the contents of the notification
messages that it sends.

By default, thenot i f y hook includes adiff of every changeset that it sends out; you can limit the size of the diff, or turn
thisfeature off entirely. Itisuseful for letting subscribersreview changesimmediately, rather than clickingto follow aURL.

10.6.3.1. Configuring the not i fy hook

You can set up the not i fy hook to send one email message per incoming changeset, or one per incoming group of
changesets (all those that arrived in asingle pull or push).

[hooks]

send one enmil per group of changes
changegroup. notify = python: hgext.notify. hook
send one enmil per change

i ncom ng. notify = python: hgext.notify. hook

Configuration information for this hook livesinthenot i f y section of a~/ . hgr c file.

 t est : By default, thishook does not send out email at all; instead, it prints the message that it would send. Set thisitem
tof al se to alow email to be sent. The reason that sending of email isturned off by default isthat it takes several tries
to configure this extension exactly as you would like, and it would be bad form to spam subscribers with a number of
“broken” notifications while you debug your configuration.

e confi g: The path to a configuration file that contains subscription information. This is kept separate from the main
~/ . hgr ¢ so that you can maintain it in a repository of its own. People can then clone that repository, update their
subscriptions, and push the changes back to your server.

e strip: The number of leading path separator characters to strip from a repository's path, when deciding whether a
repository has subscribers. For example, if the repositories on your server livein/ hone/ hg/ r epos, andnoti fy is
considering arepository named / homre/ hg/ r epos/ shar ed/ t est , setting st ri p to4 will causenoti fy totrim
the path it considers down to shar ed/ t est , and it will match subscribers against that.

» t enpl at e: The template text to use when sending messages. This specifies both the contents of the message header
and its body.

112

Handling repository events with hooks

« maxdi f f : The maximum number of lines of diff datato append to the end of a message. If adiff islonger than this, it
istruncated. By default, thisis set to 300. Set thisto 0 to omit diffs from notification emails.

e sources: A list of sources of changesets to consider. This lets you limit not i f y to only sending out email about
changes that remote users pushed into this repository via a server, for example. See Section 10.7.3.1, “Sources of
changesets’ for the sources you can specify here.

If you set the baseur | itemintheweb section, you can useit in atemplate; it will be available aswebr oot .

Hereisan example set of not i fy configuration information.

[notify]
really send enmai
test = fal se
subscriber data lives in the notify repo
config = /honme/ hg/ repos/notify/notify.conf
repos live in /hone/hg/repos on server, so strip 4 "/" chars
strip = 4
t enpl ate = X-Hg- Repo: {webroot}\n
Subj ect: {webroot}: {desc|firstline|strip}\n
From {author}
\n\n
changeset {node|short} in {root}
\'n\ ndetails:
{baseur| }{webr oot } ?cnd=changeset ; node={ node| short}
description: {desc|tabindent]|strip}

[web]
baseur| =
http://hg. exanpl e. con!

Thiswill produce a message that looks like the following:

X- Hg- Repo: tests/slave
Subj ect: tests/slave: Handle error case when slave has no buffers
Date: Wed, 2 Aug 2006 15:25:46 -0700 (PDT)

changeset 3cba9bfe74b5 in /hone/ hg/repos/tests/slave

det ai | s:
http://hg. exanpl e. coni t est s/ sl ave?cnd=changeset ; node=3cba9bf e74b5

description: Handle error case when slave has no buffers

diffs (54 lines)
di ff -r 9d95df 7cf2ad -r 3cba9bfe74b5 include/tests. h

- alinclude/tests.h Wed Aug 02 15:19:52 2006 -0700
+++ b/include/tests.h Wed Aug 02 15:25:26 2006 -0700
@®-212,6 +212,15 @static __inline__
\voi d test_headers(void *h)
[...snip...]

10.6.3.2. Testing and troubleshooting

Do not forget that by default, thenot i f y extension will not send any mail until you explicitly configureit to do so, by
settingt est tof al se. Until you do that, it simply prints the message it would send.

10.7. Information for writers of hooks

10.7.1. In-process hook execution

An in-process hook is called with arguments of the following form:

[def myhook(ui, repo, **kwargs): pass

The ui parameter isaui object. Ther epo parameter isal ocal r eposi t ory object. The names and values of the
** kwar gs parameters depend on the hook being invoked, with the following common features:

113

Handling repository events with hooks

 If aparameter is named node or par ent N, it will contain a hexadecimal changeset ID. The empty string is used to
represent “null changeset ID” instead of a string of zeroes.

 If aparameter isnamed ur | , it will contain the URL of aremote repository, if that can be determined.

» Boolean-valued parameters are represented as Python bool objects.

An in-process hook is called without a change to the process's working directory (unlike external hooks, which are run
in the root of the repository). It must not change the process's working directory, or it will cause any calls it makes into

the Mercurial AP to fail.

If ahook returns a boolean “false” value, it is considered to have succeeded. If it returns a boolean “true” value or raises
an exception, it is considered to have failed. A useful way to think of the calling convention is“tell meif you fail”.

Note that changeset IDs are passed into Python hooks as hexadecimal strings, not the binary hashes that Mercurial's APIs
normally use. To convert a hash from hex to binary, use the bi n function.

10.7.2. External hook execution

An external hook is passed to the shell of the user running Mercurial. Features of that shell, such as variable substitution
and command redirection, are available. The hook is run in the root directory of the repository (unlike in-process hooks,
which are run in the same directory that Mercurial was run in).

Hook parameters are passed to the hook as environment variables. Each environment variable's nameis converted in upper
case and prefixed with the string “HG_". For example, if the name of aparameter is“node”, the name of the environment
variable representing that parameter will be “HG_NODE”.

A boolean parameter is represented as the string “1” for “true”’, “0” for “false”. If an environment variable is named
HG_NODE, HG_PARENT1 or HG_PARENT?2, it contains a changeset ID represented as a hexadecimal string. The empty
string is used to represent “null changeset ID” instead of a string of zeroes. If an environment variable is named HG_URL,
it will contain the URL of aremote repository, if that can be determined.

If ahook exits with a status of zero, it is considered to have succeeded. If it exits with a non-zero status, it is considered
to have failed.

10.7.3. Finding out where changesets come from

A hook that involves the transfer of changesets between alocal repository and another may be able to find out information
about the “far side”. Mercurial knows how changes are being transferred, and in many cases where they are being
transferred to or from.

10.7.3.1. Sources of changesets

Mercurial will tell ahook what means are, or were, used to transfer changesets between repositories. Thisis provided by
Mercurial in a Python parameter named sour ce, or an environment variable named HG_SOURCE.

» ser ve: Changesets are transferred to or from aremote repository over http or ssh.
* pul | : Changesets are being transferred via a pull from one repository into another.
» push: Changesets are being transferred via a push from one repository into another.

* bundl e: Changesets are being transferred to or from a bundle.

10.7.3.2. Where changes are going—remote repository URLS

When possible, Mercurial will tell ahook the location of the “far side” of an activity that transfers changeset data between
repositories. Thisisprovided by Mercuria in aPython parameter named ur | , or an environment variable named HG_URL.

114

Handling repository events with hooks

This information is not always known. If a hook is invoked in arepository that is being served via http or ssh, Mercuria
cannot tell where the remote repository is, but it may know where the client is connecting from. In such cases, the URL
will take one of the following forms:

e renote: ssh: 1. 2. 3. 4—remote ssh client, at the IP address 1. 2. 3. 4.

e renote: http: 1. 2. 3. 4—remote http client, at the IPaddress 1. 2. 3. 4. If the client isusing SSL, thiswill be of
theformrenot e: https: 1. 2. 3. 4.

» Empty—no information could be discovered about the remote client.

10.8. Hook reference

10.8.1. changegr oup—after remote changesets added

This hook is run after a group of pre-existing changesets has been added to the repository, for example viaahg pull or hg
unbundle. This hook is run once per operation that added one or more changesets. Thisisin contrast to thei nconi ng
hook, which is run once per changeset, regardless of whether the changesets arrive in a group.

Some possible uses for this hook include kicking off an automated build or test of the added changesets, updating a bug
database, or notifying subscribers that a repository contains new changes.

Parameters to this hook:

» node: A changeset ID. The changeset ID of thefirst changeset in the group that was added. All changesets between this
andti p, inclusive, were added by asingle hg pull, hg push or hg unbundle.

* sour ce: A string. The source of these changes. See Section 10.7.3.1, “ Sources of changesets’ for details.

e url : A URL. Thelocation of the remoterepository, if known. See Section 10.7.3.2, “Where changes are going—remote
repository URLS’ for more information.

See also: i ncom ng (Section 10.8.3, “i nconi ng—after one remote changeset is added”), pr echangegr oup
(Section 10.8.5, “prechangegr oup—before starting to add remote changesets’), pr et xnchangegroup
(Section 10.8.9, “pr et xnchangegr oup—before completing addition of remote changesets’)

10.8.2. comm t —after a new changeset is created

This hook is run after anew changeset has been created.

Parameters to this hook:

e node: A changeset ID. The changeset ID of the newly committed changeset.

e par ent 1: A changeset ID. The changeset ID of thefirst parent of the newly committed changeset.

* par ent 2: A changeset ID. The changeset ID of the second parent of the newly committed changeset.

See aso: preconmit (Section 10.8.6, “pr ecomni t —before starting to commit a changeset”), pr et xnconmi t
(Section 10.8.10, “pr et xnconmi t —before completing commit of new changeset”)

10.8.3. i ncom ng—after one remote changeset is added

This hook is run after a pre-existing changeset has been added to the repository, for example viaa hg push. If agroup of
changesets was added in a single operation, this hook is called once for each added changeset.

Y ou can use thishook for the same purposes asthe changegr oup hook (Section 10.8.1, “changegr oup—after remote
changesets added”); it's simply more convenient sometimes to run a hook once per group of changesets, while other times
it's handier once per changeset.

115

Handling repository events with hooks

Parameters to this hook:
* node: A changeset ID. The ID of the newly added changeset.
e sour ce: A string. The source of these changes. See Section 10.7.3.1, “ Sources of changesets’ for details.

e url : A URL. Thelocation of the remoterepository, if known. See Section 10.7.3.2, “Where changes are going—remote
repository URLS’ for more information.

See aso: changegr oup (Section 10.8.1, “changegr oup—after remote changesets added”) pr echangegr oup
(Section 10.8.5, “prechangegr oup—before starting to add remote changesets’), pr et xnchangegroup
(Section 10.8.9, “pr et xnchangegr oup—before completing addition of remote changesets’)

10.8.4. out goi ng—after changesets are propagated

This hook is run after a group of changesets has been propagated out of this repository, for example by a hg push or hg
bundle command.

One possible use for this hook is to notify administrators that changes have been pulled.
Parameters to this hook:
» node: A changeset ID. The changeset ID of the first changeset of the group that was sent.

e sour ce: A string. The source of the of the operation (see Section 10.7.3.1, “ Sources of changesets’). If aremote client
pulled changes from this repository, sour ce will be ser ve. If the client that obtained changes from this repository
was local, sour ce will bebundl e, pul | , or push, depending on the operation the client performed.

e url : A URL. Thelocation of theremoterepository, if known. See Section 10.7.3.2, “Where changes are going—remote
repository URLS’ for more information.

See also: pr eout goi ng (Section 10.8.7, “pr eout goi ng—before starting to propagate changesets’)

10.8.5. pr echangegr oup—before starting to add remote
changesets

This controlling hook is run before Mercurial beginsto add a group of changesets from another repository.

This hook does not have any information about the changesets to be added, because it is run before transmission of those
changesetsis alowed to begin. If this hook fails, the changesets will not be transmitted.

One use for this hook is to prevent external changes from being added to a repository. For example, you could use this
to “freeze” a server-hosted branch temporarily or permanently so that users cannot push to it, while still allowing a local
administrator to modify the repository.

Parameters to this hook:
* sour ce: A string. The source of these changes. See Section 10.7.3.1, “ Sources of changesets” for details.

» url : A URL. Thelocation of theremoterepository, if known. See Section 10.7.3.2, “Where changes are going—remote
repository URLS’ for more information.

See dso: changegroup (Section 10.8.1, “changegr oup—after remote changesets added”), i nconi ng
(Section 10.8.3, “i ncom ng—after one remote changeset is added”), pret xnchangegroup (Section 10.8.9,
“pr et xnchangegr oup—nbefore completing addition of remote changesets’)

10.8.6. pr econm t —before starting to commit a changeset

This hook is run before Mercurial begins to commit a new changeset. It is run before Mercuria has any of the metadata
for the commit, such as the files to be committed, the commit message, or the commit date.

116

Handling repository events with hooks

One use for thishook isto disable the ability to commit new changesets, while till allowing incoming changesets. Another
istorun abuild or test, and only allow the commit to begin if the build or test succeeds.

Parameters to this hook:

» parent 1: A changeset ID. The changeset ID of the first parent of the working directory.

» parent 2: A changeset ID. The changeset ID of the second parent of the working directory.

If the commit proceeds, the parents of the working directory will become the parents of the new changeset.

See also: comi t (Section 10.8.2, “conmi t —after a new changeset is created”), pr et xnconmi t (Section 10.8.10,
“pr et xncomm t —before completing commit of new changeset”)

10.8.7. pr eout goi ng—before starting to propagate
changesets
This hook isinvoked before Mercurial knows the identities of the changesets to be transmitted.
One use for this hook is to prevent changes from being transmitted to another repository.
Parameters to this hook:

e source: A string. The source of the operation that is attempting to obtain changes from this repository (see
Section 10.7.3.1, “ Sources of changesets’). See the documentation for the sour ce parameter to the out goi ng hook,
in Section 10.8.4, “out goi ng—after changesets are propagated”, for possible values of this parameter.

e url : A URL. Thelocation of the remoterepository, if known. See Section 10.7.3.2, “Where changes are going—remote
repository URLS’ for more information.

See also: out goi ng (Section 10.8.4, “out goi hg—after changesets are propagated”)

10.8.8. pr et ag—before tagging a changeset

This controlling hook is run before atag is created. If the hook succeeds, creation of the tag proceeds. If the hook fails,
the tag is not created.

Parameters to this hook:

e | ocal : A boolean. Whether the tag is local to this repository instance (i.e. stored in . hg/ | ocal t ags) or managed
by Mercuria (stored in. hgt ags).

* node: A changeset ID. The ID of the changeset to be tagged.

* t ag: A string. The name of the tag to be created.

If thetag to be created isrevision-controlled, the pr ecomi t and pr et xncomi t hooks (Section 10.8.2, “conmi t —
after anew changeset is created” and Section 10.8.10, “pr et xnconmm t —before completing commit of new changeset”)

will also be run.

Seeadso: t ag (Section 10.8.12, “t ag—after tagging a changeset”)

10.8.9. pr et xnchangegr oup—before completing addition of
remote changesets

This controlling hook is run before a transaction—that manages the addition of a group of new changesets from outside
the repository—completes. If the hook succeeds, the transaction completes, and all of the changesets become permanent
within this repository. If the hook fails, the transaction is rolled back, and the data for the changesets is erased.

117

Handling repository events with hooks

This hook can access the metadata associated with the almost-added changesets, but it should not do anything permanent
with this data. It must also not modify the working directory.

While this hook is running, if other Mercurial processes access this repository, they will be able to see the almost-added
changesets as if they are permanent. This may lead to race conditionsif you do not take steps to avoid them.

This hook can be used to automatically vet a group of changesets. If the hook fails, all of the changesets are “rejected”
when the transaction rolls back.

Parameters to this hook:

» node: A changeset ID. The changeset ID of thefirst changeset in the group that was added. All changesets between this
andti p,inclusive, were added by a single hg pull, hg push or hg unbundle.

e sour ce: A string. The source of these changes. See Section 10.7.3.1, “ Sources of changesets’ for details.

e url : A URL. Thelocation of the remoterepository, if known. See Section 10.7.3.2, “Where changes are going—remote
repository URLS’ for more information.

See aso: changegroup (Section 10.8.1, “changegr oup—after remote changesets added”), i nconi ng
(Section 10.8.3, “i ncom ng—after one remote changeset is added”), prechangegroup (Section 10.8.5,
“pr echangegr oup—before starting to add remote changesets’)

10.8.10. pr et xnconmm t —before completing commit of new
changeset

This controlling hook is run before a transaction—that manages a new commit—completes. If the hook succeeds, the
transaction completes and the changeset becomes permanent within this repository. If the hook fails, the transaction is
rolled back, and the commit datais erased.

Thishook can access the metadata associated with the almost-new changeset, but it should not do anything permanent with
this data. It must also not modify the working directory.

While this hook is running, if other Mercurial processes access this repository, they will be able to see the almost-new
changeset asif it is permanent. This may lead to race conditions if you do not take steps to avoid them.

Parameters to this hook:

* node: A changeset ID. The changeset ID of the newly committed changeset.

e par ent 1: A changeset ID. The changeset ID of thefirst parent of the newly committed changeset.

» par ent 2: A changeset ID. The changeset ID of the second parent of the newly committed changeset.

See also: preconmi t (Section 10.8.6, “pr econmi t —before starting to commit a changeset”)

10.8.11. pr eupdat e—before updating or merging working
directory

This controlling hook is run before an update or merge of the working directory begins. It isrun only if Mercuria's normal
pre-update checks determine that the update or merge can proceed. If the hook succeeds, the update or merge may proceed;
if it fails, the update or merge does not start.

Parameters to this hook:

» parent 1: A changeset ID. The ID of the parent that the working directory isto be updated to. If the working directory
is being merged, it will not change this parent.

* parent 2: A changeset ID. Only set if the working directory is being merged. The ID of the revision that the working
directory is being merged with.

118

Handling repository events with hooks

See also: updat e (Section 10.8.13, “updat e—after updating or merging working directory”)

10.8.12. t ag—after tagging a changeset

This hook isrun after atag has been created.
Parameters to this hook:

» | ocal : A boolean. Whether the new tagislocal tothisrepository instance(i.e. storedin. hg/ | ocal t ags) or managed
by Mercurial (stored in. hgt ags).

* node: A changeset ID. The ID of the changeset that was tagged.
» t ag: A string. The name of the tag that was created.

If the created tag is revision-controlled, the commi t hook (section Section 10.8.2, “commi t —after a new changeset is
created”) isrun before this hook.

See also: pr et ag (Section 10.8.8, “pr et ag—before tagging a changeset”)

10.8.13. updat e—after updating or merging working directory

Thishook isrun after an update or merge of theworking directory completes. Sinceamerge canfail (if theexternal hgmer ge
command failsto resolve conflictsin afile), this hook communicates whether the update or merge completed cleanly.

» error: A boolean. Indicates whether the update or merge completed successfully.

* parent 1: A changeset ID. The ID of the parent that the working directory was updated to. If the working directory
was merged, it will not have changed this parent.

e parent 2: A changeset ID. Only set if the working directory was merged. The ID of the revision that the working
directory was merged with.

See also: pr eupdat e (Section 10.8.11, “pr eupdat e—before updating or merging working directory”)

119

Chapter 11. Customizing the output of
Mercurial

Mercurial provides a powerful mechanism to let you control how it displays information. The mechanism is based on
templates. Y ou can use templates to generate specific output for a single command, or to customize the entire appearance
of the built-in web interface.

11.1. Using precanned output styles

Packaged with Mercuria are some output styles that you can useimmediately. A styleis simply aprecanned template that
someone wrote and installed somewhere that Mercuria can find.

Before we take alook at Mercurial's bundled styles, let's review its normal output.

$ hg log -r1

changeset : 1: 0b86e3133dfc

t ag: nyt ag

user: Bryan O Sul l'i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:58:36 2010 +0000
summary: added line to end of <<hello>> file

Thisissomewhat informative, but it takes up alot of space—fivelines of output per changeset. Theconpact stylereduces
thisto three lines, presented in a sparse manner.

$ hg log --style conpact
3[tip] e6d79dbf 9e72 2010-11-01 23:58 +0000 bos
Added tag vO0.1 for changeset ¢2588319bb7e

2[vO0. 1] c2588319bb7e 2010-11-01 23:58 +0000 bos
Added tag nmytag for changeset 0b86e3133dfc

1[nyt ag] 0b86e3133df c 2010-11-01 23:58 +0000 bos
added line to end of <<hello>> file.

0 c47833a2b676 2010-11-01 23:58 +0000 bos
added hello

The changel og style hints at the expressive power of Mercurial's templating engine. This style attempts to follow the
GNU Project's changel og guidelinesweb:changel og].

$ hg log --style changel og
2010-11-01 Bryan O Sullivan <bos@erpentine.conp

* _hgtags
Added tag vO0.1 for changeset ¢2588319bb7e
[e6d79dbf 9e72] [ti p]

* _hgtags
Added tag nytag for changeset 0b86e3133dfc
[c2588319bb7e] [vO. 1]

* goodbye, hello:
added line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope
that sone mght consider it so) of goodbye
[0b86e3133dfc] [nytag]

* hell o:
added hell o
[c47833a2b676]

120

Customizing the output of Mercurial

Y ou will not be shocked to learn that Mercurial's default output style is named def aul t .

11.1.1. Setting a default style

Y ou can modify the output style that Mercurial will use for every command by editing your ~/ . hgr ¢ file, naming the
style you would prefer to use.

[ui]
styl e = conpact

If you write astyle of your own, you can useit by either providing the path to your stylefile, or copying your stylefileinto
alocation where Mercuria can find it (typically thet enpl at es subdirectory of your Mercurial install directory).

11.2. Commands that support styles and templates

All of Mercurial's“l og-like” commands let you use styles and templates: hg incoming, hg log, hg outgoing, and hg tip.

As | write this manual, these are so far the only commands that support styles and templates. Since these are the most
important commands that need customizable output, there has been little pressure from the Mercurial user community to
add style and template support to other commands.

11.3. The basics of templating

At its simplest, a Mercuria template is a piece of text. Some of the text never changes, while other parts are expanded,
or replaced with new text, when necessary.

Before we continue, let's look again at a simple example of Mercurial's normal output.

$ hg log -r1

changeset : 1: 0b86e3133df c

t ag: nyt ag

user: Bryan O Sul | i van <bos@er penti ne. con
dat e: Mon Nov 01 23:58:36 2010 +0000
sunmary: added line to end of <<hello>> file

Now, let's run the same command, but using a template to change its output.

$ hg log -r1 --tenplate 'i saw a changeset\n
i saw a changeset

The example aboveillustrates the simplest possible template; it'sjust a piece of static text, printed once for each changeset.
The- - t enpl at e option to the hg log command tells Mercurial to use the given text as the template when printing each
changeset.

Notice that the template string above ends with the text “\ n”. This is an escape sequence, telling Mercuria to print a
newline at the end of each template item. If you omit this newline, Mercuria will run each piece of output together. See
Section 11.5, “ Escape sequences’ for more details of escape sequences.

A template that prints afixed string of text al the timeisn't very useful; let's try something a bit more complex.

$ hg log --tenplate 'i saw a changeset: {desc}\n

i saw a changeset: Added tag vO0.1 for changeset c2588319bb7e
i saw a changeset: Added tag nytag for changeset 0b86e3133dfc
i saw a changeset: added line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |least i hope that sonme might consider it so) of
goodbye
i saw a changeset: added hello

Asyou can see, thestring “{ desc} ” in thetemplate has been replaced in the output with the description of each changeset.
Every time Mercurial finds text enclosed in curly braces (“{” and “} "), it will try to replace the braces and text with the

121

Customizing the output of Mercurial

expansion of whatever isinside. To print aliteral curly brace, you must escape it, as described in Section 11.5, “Escape
seguences’.

11.4. Common template keywords

You can start writing simple templates immediately using the keywords below.
 aut hor : String. The unmodified author of the changeset.

* branches: String. The name of the branch on which the changeset was committed. Will be empty if the branch name
wasdef aul t.

» dat e: Date information. The date when the changeset was committed. This is not human-readable; you must pass it
through afilter that will render it appropriately. See Section 11.6, “Filtering keywords to change their results’ for more
information on filters. The date is expressed as a pair of humbers. The first number isa Unix UTC timestamp (seconds
since January 1, 1970); the second is the offset of the committer's timezone from UTC, in seconds.

» desc: String. The text of the changeset description.

« fil es:Listof strings. All files modified, added, or removed by this changeset.

o file_adds: Listof strings. Filesadded by this changeset.

e file_del s:Listof strings. Filesremoved by this changeset.

* node: String. The changeset identification hash, as a 40-character hexadecimal string.
e par ent s: List of strings. The parents of the changeset.

* rev: Integer. The repository-local changeset revision number.

e tags: List of strings. Any tags associated with the changeset.

A few simple experiments will show us what to expect when we use these keywords; you can see the results below.

$ hg log -rl1 --tenplate 'author: {author}\n
aut hor: Bryan O Sullivan <bos@er pentine. con>
$ hg log -r1 --tenplate 'desc:\n{desc}\n
desc:

added line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |east i hope that some might consider it so) of
goodbye

$ hg log -rl --tenplate 'files: {files}\n

files: goodbye hello

$ hg log -r1 --tenplate 'file_adds: {file_adds}\n

file_adds: goodbye

$ hg log -r1l --tenplate '"file_dels: {file_dels}\n

file_dels:

$ hg log -r1 --tenplate 'node: {node}\n

node: 0b86e3133df cal339a849ce7b00e478be96a3a7e

$ hg log -r1l --tenplate 'parents: {parents}\n

parents

$ hg log -r1 --tenplate 'rev: {rev}\n
rev: 1

$ hg log -r1 --tenplate 'tags: {tags}\n
tags: mytag

Aswe noted above, the date keyword does not produce human-readabl e output, so we must treat it specially. Thisinvolves
using afilter, about which more in Section 11.6, “Filtering keywords to change their results’.

$ hg log -rl --tenplate 'date: {date}\n'

dat e: 1288655916. 00

$ hg log -rl --tenplate 'date: {date|isodate}\n'
date: 2010-11-01 23:58 +0000

122

Customizing the output of Mercurial

11.5. Escape sequences

Mercurial's templating engine recognises the most commonly used escape sequences in strings. When it sees a backslash
(“\' ") character, it looks at the following character and substitutesthe two characterswith asingle replacement, as described
below.

\ : Backslash, “\ ", ASCII 134.

\ n: Newline, ASCII 12.

\ r : Carriage return, ASCII 15.

\'t: Tab, ASCII 11.

\ v: Vertical tab, ASCII 13.

\ {: Open curly brace, “{”, ASCII 173.

\ }: Closecurly brace, “} ", ASCII 175.

Asindicated above, if you want the expansion of atemplateto containaliteral “\ ”,“{ ", or “{ ” character, you must escapeit.

11.6. Filtering keywords to change their results

Some of the results of template expansion are not immediately easy to use. Mercurial lets you specify an optional chain of
filter s to modify the result of expanding a keyword. Y ou have already seen a common filter, i sodat e, in action above,
to make a date readable.

Below isalist of the most commonly used filters that Mercurial supports. While some filters can be applied to any text,
others can only be used in specific circumstances. The name of each filter is followed first by an indication of where it
can be used, then a description of its effect.

addbr eaks: Any text. Add an XHTML “<br / >” tag before the end of every line except the last. For example, “f oo
\ nbar ” becomes*“f oo<br/ >\ nbar ”.

age: dat e keyword. Render the age of the date, relative to the current time. Yieldsastring like“10 m nut es”.

basenane: Any text, but most useful for thef i | es keyword and itsrelatives. Treat the text as a path, and return the
basename. For example, “f oo/ bar / baz” becomes“baz”.

dat e: dat e keyword. Render a date in a similar format to the Unix dat e command, but with timezone included.
Yieldsastring like“Mon Sep 04 15:13: 13 2006 -0700".

domai n: Any text, but most useful for theaut hor keyword. Finds thefirst string that |ooks like an email address, and
extract just the domain component. For example, “Bryan O Sul | i van <bos@er penti ne. con®” becomes
“ser pentine. conf.

emai | : Any text, but most useful for theaut hor keyword. Extract thefirst string that looks like an email address. For
example, “Bryan O Sul li van <bos@er penti ne. cont” becomes“bos@er penti ne. conf.

escape: Any text. Replace the special XML/XHTML characters“&”, “<” and “>" with XML entities.

fill68: Any text. Wrap the text to fit in 68 columns. This is useful before you pass text through the t abi ndent
filter, and still want it to fit in an 80-column fixed-font window.

fill76:Any text. Wrap the text to fit in 76 columns.
firstline: Any text. Yield thefirst line of text, without any trailing newlines.

hgdat e: dat e keyword. Render the date as a pair of readable numbers. Yieldsastring like“1157407993 25200".

123

Customizing the output of Mercurial

* i sodat e: dat e keyword. Render the date as a text string in 1SO 8601 format. Yields a string like “2006- 09- 04
15:13:13 -0700".

« obf uscat e: Any text, but most useful for the aut hor keyword. Yield the input text rendered as a sequence of XML
entities. This helpsto defeat some particularly stupid screen-scraping email harvesting spambots.

» person: Any text, but most useful for the aut hor keyword. Yield the text before an email address. For example,
“Bryan O Sul | i van <bos@er penti ne. con®” becomes“Bryan O Sul | i van”.

» rfc822dat e: dat e keyword. Render adate using the same format used in email headers. Yieldsastring like “Mon,
04 Sep 2006 15:13:13 -0700".

» short : Changeset hash. Yield the short form of a changeset hash, i.e. a 12-character hexadecimal string.

» short dat e: dat e keyword. Render the year, month, and day of the date. Yieldsastring like“2006- 09- 04”.
e strip: Any text. Strip al leading and trailing whitespace from the string.

» t abi ndent : Any text. Yield the text, with every line except the first starting with a tab character.

e url escape: Any text. Escape all characters that are considered “special” by URL parsers. For example, f oo bar
becomesf oo%20bar .

e user : Any text, but most useful for theaut hor keyword. Return the “user” portion of an email address. For example,
“Bryan O Sul livan <bos@er penti ne. con>” becomes“bos”.

$ hg log -r1 --tenplate '{author}\n

Bryan O Sul li van <bos@er penti ne. conr

$ hg log -rl --tenplate '{author|domain}\n

ser pentine.com

$ hg log -r1 --tenplate '{author|email}\n
bos@er penti ne. com

$ hg log -rl1 --tenplate '{author|obfuscate}\n'" | cut -c-76
B r y a n O ' S u l l i
$ hg log -rl --tenplate '{author|person}\n

Bryan O Sul i van

$ hg log -r1 --tenplate '{author|user}\n

bos

$ hg log -r1 --tenplate 'looks alnost right, but actually garbage: {date}\n
| ooks al most right, but actually garbage: 1288655916. 00

$ hg log -r1 --tenplate '{date|age}\n’

3 seconds ago

$ hg log -r1 --tenplate '{date|date}\n'

Mon Nov 01 23:58:36 2010 +0000

$ hg log -r1 --tenplate '{date|hgdate}\n'

1288655916 0

$ hg log -r1 --tenplate '{date|isodate}\n'

2010-11-01 23:58 +0000

$ hg log -rl1 --tenplate '{date|rfc822date}\n

Mon, 01 Nov 2010 23:58:36 +0000

$ hg log -rl1 --tenplate '{date|shortdate}\n'

2010-11-01

$ hg log -r1 --tenplate '{desc}\n'" | cut -c-76

added line to end of <<hello>> file.

in addition, added a file with the hel pful nane (at |east i hope that some m
$ hg log -rl1 --tenplate '{desc|addbreaks}\n' | cut -c-76

added line to end of <<hello>> file.

in addition, added a file with the hel pful nane (at |east i hope that some m
$ hg log -r1 --tenplate '{desc|escape}\n' | cut -c-76

added line to end of & t;& t;hello>> file.

in addition, added a file with the hel pful nane (at |east i hope that some m
$ hg log -r1 --tenplate '{desc|fill68}\n'
added line to end of <<hello>> file.

in addition, added a file with the hel pful nane (at |east i hope

124

Customizing the output of Mercurial

t hat some m ght consider it so) of goodbye
$ hg log -rl1 --tenplate '{desc|fill76}\n'
added line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |least i hope that sone
m ght consider it so) of goodbye

$ hg log -rl1 --tenplate '{desc|firstline}\n

added line to end of <<hello>> file.

$ hg log -r1 --tenplate '{desc|strip}\n" | cut -c-76

added line to end of <<hello>> file.

in addition, added a file with the hel pful nane (at |east i hope that some m
$ hg log -r1 --tenplate '{desc|tabindent}\n" | expand | cut -c-76
added line to end of <<hello>> file.

in addition, added a file with the hel pful name (at |least i hope tha
$ hg log -rl1 --tenplate '{node}\n
0b86e3133df cal339a849ce7b00e478be96a3a7e
$ hg log -rl1 --tenplate '{node|short}\n
0b86e3133df c

Note

If you try to apply afilter to a piece of data that it cannot process, Mercuria will fail and print a Python
exception. For example, trying to run the output of the desc keyword into thei sodat e filter is not agood
idea

11.6.1. Combining filters

Itiseasy to combinefiltersto yield output in the form you would like. The following chain of filterstidies up adescription,
then makes sure that it fits cleanly into 68 columns, then indents it by afurther 8 characters (at least on Unix-like systems,
where atab is conventionally 8 characters wide).

$ hg log -r1l --tenplate 'description:\n\t{desc|strip|fill68|tabindent}\n
descri ption
added line to end of <<hello>> file.

in addition, added a file with the hel pful nanme (at |east i hope
that sonme might consider it so) of goodbye

Note the use of “\'t” (a tab character) in the template to force the first line to be indented; this is necessary since
t abi ndent indentsall lines except thefirst.

Keep in mind that the order of filtersin a chain is significant. The first filter is applied to the result of the keyword; the
second to the result of the first filter; and so on. For example, using fi | | 68| t abi ndent gives very different results
fromt abi ndent | fill 68.

11.7. From templates to styles

A command line template provides a quick and simpleway to format some output. Templates can become verbose, though,
and it's useful to be able to give atemplate aname. A stylefileis atemplate with aname, stored in afile.

More than that, using a style file unlocks the power of Mercurial's templating engine in ways that are not possible using
the command line - - t enpl at e option.

11.7.1. The simplest of style files

Our simple stylefile contains just one line;

$ echo 'changeset = "rev: {rev}\n"' > rev
$ hg log -11 --style ./rev
rev: 3

Thistells Mercurial, “if you're printing a changeset, use the text on the right as the template”.

125

Customizing the output of Mercurial

11.

7.2. Style file syntax

The syntax rules for astylefile are simple.

» Thefileisprocessed oneline at atime.

 Leading and trailing white space are ignored.

» Empty lines are skipped.

« If aline starts with either of the characters“#” or “; ", the entire line is treated as a comment, and skipped asif empty.

* Alinestartswith akeyword. Thismust start with an al phabetic character or underscore, and can subsequently contain any
alphanumeric character or underscore. (In regexp notation, a keyword must match [A- Za-z_] [A- Za-z0-9_]*))

» Thenext element must be an “=" character, which can be preceded or followed by an arbitrary amount of white space.

« If therest of the line starts and ends with matching quote characters (either single or double quote), it is treated as a
template body.

« If therest of the line does not start with a quote character, it is treated as the name of afile; the contents of this file
will be read and used as atemplate body.

11.8. Style files by example

11.

Toillustrate how to write astylefile, wewill construct afew by example. Rather than provide acomplete stylefileand walk
through it, we'll mirror the usual process of developing a style file by starting with something very simple, and walking
through a series of successively more complete examples.

8.1. Identifying mistakes in style files

If Mercurial encounters a problem in a style file you are working on, it prints a terse error message that, once you figure
out what it means, is actually quite useful.

$ cat broken.style

changeset =

Notice that br oken. st yl e attempts to define a changeset keyword, but forgets to give any content for it. When
instructed to use this style file, Mercurial promptly complains.

$ hg log -r1 --style broken.style
** unknown exception encountered, please report by visiting
** http://mercurial.selenic.conm w Kki/BugTracker
** Python 2.6.6 (r266:84292, Sep 15 2010, 16:22:56) [GCC 4.4.5]
** Mercurial Distributed SCM (version 1.7)
** Extensions | oaded
Traceback (nost recent call |ast)
File "/hone/steve/ bin/hg", line 38, in <npdul e>
mercuri al . di spatch. run()
File "/home/steve/lib/python/ mercurial/dispatch.py", line 16, in run
sys. exit(dispatch(sys.argv[1l:]))
File "/hone/steve/lib/python/ mercurial/dispatch.py", line 36, in dispatch
return _runcatch(u, args)
File "/home/steve/lib/python/ mercurial/dispatch.py", line 58, in _runcatch
return _dispatch(ui, args)
File "/home/stevel/lib/python/ mercurial/dispatch.py", line 590, in _dispatch
cndpat s, cndopti ons)
File "/hone/steve/lib/python/ mercurial/dispatch.py", line 401, in runcomuand
ret = _runcommand(ui, options, cnd, d)
File "/hone/steve/lib/python/ mercurial/dispatch.py", line 641, in _runcomand
return checkargs()
File "/home/steve/lib/python/ mercurial/dispatch. py", Iine 595, in checkargs
return cmdfunc()

File "/hone/steve/lib/python/ mercurial/dispatch.py", line 588, in <lanbda>

126

Customizing the output of Mercurial

d = lanbda: util.checksignature(func)(ui, *args, **cndoptions)

File "/hone/stevel/lib/python/nercurial/util.py", line 427, in check
return func(*args, **kwargs)

File "/hone/stevel/lib/python/ mercurial/commands. py", line 2504, in |og

di spl ayer = cndutil.show changeset(ui, repo, opts, True)

t = changeset _tenplater(ui, repo, patch, opts, nmapfile, buffered)
File "/home/stevel/lib/python/mercurial/cndutil.py", line 906, in __init__
cache=def aul ttenpl)

if val[0O] in ""\""
| ndexError: string index out of range

File "/home/steve/lib/python/ mercurial/cndutil.py", line 1037, in show_changeset

File "/honme/steve/lib/python/ mercurial/tenplater.py", line 197, in __init__

This error message looks intimidating, but it is not too hard to follow.

e Thefirst component is simply Mercuria's way of saying “l am giving up”.

abort . broken.style:1: parse error

» Next comes the name of the style file that contains the error.

pbort: br oken. styl e :1: parse error

 Following the file name is the line number where the error was encountered.

pbort: br oken. styl e: 1 . parse error

* Finaly, adescription of what went wrong.

pbort: br oken. styl e: 1: parse error

» Thedescription of the problem isnot aways clear (asin this case), but even whenitiscryptic, it isalmost alwaystrivia

to visually inspect the offending line in the style file and see what iswrong.

11.8.2. Uniquely identifying a repository

If you would like to be able to identify a Mercurial repository “fairly uniquely” using a short string as an identifier, you

can use the first revision in the repository.

$ hg log -r0 --tenplate '{node}’
3f 7b6cd4d889bdecOf 86eb9aal8e2ec2dc5df db2

Thisislikely to be unique, and so it is useful in many cases. There are afew caveats.

« It will not work in acompletely empty repository, because such arepository does not have a revision zero.

» Neither will it work in the (extremely rare) case where a repository is a merge of two or more formerly independent

repositories, and you still have those repositories around.
Here are some uses to which you could put this identifier:

» Asakey into atable for a database that manages repositories on a server.

» Ashalf of a{repository ID, revision | D} tuple. Save this information away when you run an automated build or other

activity, so that you can “replay” the build later if necessary.

11.8.3. Listing files on multiple lines

Suppose we want to list the files changed by a changeset, one per line, with alittle indentation before each file name.

$ cat > nultiline << ECF
> changeset = "Changed in {node|short}:\n{files}"
> file =" {file}\n"
> EOF

$ hg log --style nmultiline

Changed in 16cd0b96d22f

127

Customizing the output of Mercurial

. bashrc
.hgrc
test.c

11.8.4. Mimicking Subversion's output

Let'stry to emulate the default output format used by another revision control tool, Subversion.

$ svn log -r9653

r9653 | sean. hefty | 2006-09-27 14:39:55 -0700 (Wed, 27 Sep 2006) | 5 lines

On reporting a route error, also include the status for the error
rather than indicating a status of 0 when an error has occurred

Si gned- of f-by: Sean Hefty <sean. hefty@ntel.con>

Since Subversion's output styleisfairly simple, it is easy to copy-and-paste a hunk of its output into afile, and replace the
text produced above by Subversion with the template values we'd like to see expanded.

$ cat svn.tenplate
r{rev} | {author|user} | {date|isodate} ({date|rfc822date})

{desc|strip|fill 76}

There are afew small waysin which this template deviates from the output produced by Subversion.

» Subversion prints a “readable” date (the “W\ed, 27 Sep 2006” in the example output above) in parentheses.
Mercurial's templating engine does not provide a way to display a date in this format without also printing the time
and time zone.

» We emulate Subversion's printing of “separator” lines full of “- " characters by ending the template with such aline.
We use the templating engine's header keyword to print a separator line as the first line of output (see below), thus
achieving similar output to Subversion.

» Subversion's output includes a count in the header of the number of lines in the commit message. We cannot replicate
thisin Mercuria; the templating engine does not currently provide a filter that counts the number of lines the template
generates.

It took me no more than aminute or two of work to replace literal text from an example of Subversion's output with some
keywords and filters to give the template above. The style file smply refers to the template.

$ cat svn.style
header = ' - --ooo oo oo \n\n
changeset = svn.tenplate

We could have included the text of the template file directly in the style file by enclosing it in quotes and replacing the
newlineswith “\ n” sequences, but it would have made the stylefile too difficult to read. Readability isagood guide when
you're trying to decide whether some text belongsin a stylefile, or in atemplatefile that the stylefile pointsto. If the style
file will look too big or cluttered if you insert aliteral piece of text, drop it into atemplate instead.

128

Chapter 12. Managing change with
Mercurial Queues

12.1. The patch management problem

Here is a common scenario: you need to install a software package from source, but you find a bug that you must fix in
the source before you can start using the package. Y ou make your changes, forget about the package for a while, and a
few months later you need to upgrade to a newer version of the package. If the newer version of the package till has the
bug, you must extract your fix from the older source tree and apply it against the newer version. This is a tedious task,
and it's easy to make mistakes.

Thisisasimple case of the “ patch management” problem. Y ou have an “upstream” source tree that you can't change; you
need to make some local changes on top of the upstream tree; and you'd like to be able to keep those changes separate, so
that you can apply them to newer versions of the upstream source.

The patch management problem arisesin many situations. Probably the most visibleisthat auser of an open source software
project will contribute a bug fix or new feature to the project's maintainersin the form of a patch.

Distributors of operating systems that include open source software often need to make changes to the packages they
distribute so that they will build properly in their environments.

When you have few changes to maintain, it is easy to manage a single patch using the standard diff and patch programs
(see Section 12.4, “Understanding patches’ for a discussion of these tools). Once the number of changes grows, it startsto
make sense to maintain patches as discrete “ chunks of work,” so that for example a single patch will contain only one bug
fix (the patch might modify several files, but it's doing “ only one thing”), and you may have a number of such patches for
different bugs you need fixed and local changes you require. In thissituation, if you submit abug fix patch to the upstream
maintainers of a package and they include your fix in a subsequent release, you can simply drop that single patch when
you're updating to the newer release.

Maintaining a single patch against an upstream tree is a little tedious and error-prone, but not difficult. However, the
complexity of the problem grows rapidly as the number of patches you have to maintain increases. With more than a
tiny number of patches in hand, understanding which ones you have applied and maintaining them moves from messy to
overwhelming.

Fortunately, Mercurial includes a powerful extension, Mercurial Queues (or simply “MQ"), that massively simplifies the
patch management problem.

12.2. The prehistory of Mercurial Queues

During the late 1990s, several Linux kernel developers started to maintain “patch series’ that modified the behavior of the
Linux kernel. Some of these series were focused on stability, some on feature coverage, and others were more speculative.

The sizes of these patch series grew rapidly. In 2002, Andrew Morton published some shell scripts he had been using
to automate the task of managing his patch queues. Andrew was successfully using these scripts to manage hundreds
(sometimes thousands) of patches on top of the Linux kernel.

12.2.1. A patchwork quilt

In early 2003, Andreas Gruenbacher and Martin Quinson borrowed the approach of Andrew's scripts and published a tool
called “patchwork quilt” [web:quilt], or simply “quilt” (see [gruenbacher:2005] for a paper describing it). Because quilt
substantially automated patch management, it rapidly gained alarge following among open source software devel opers.

Quilt manages a stack of patches on top of adirectory tree. To begin, you tell quilt to manage a directory tree, and tell it
which files you want to manage; it stores away the names and contents of those files. To fix abug, you create a new patch
(using a single command), edit the files you need to fix, then “refresh” the patch.

129

Managing change with Mercurial Queues

The refresh step causes quilt to scan the directory tree; it updates the patch with all of the changes you have made. Y ou
can create another patch on top of the first, which will track the changes required to modify the tree from “tree with one
patch applied” to “tree with two patches applied”.

Y ou can change which patches are applied to the tree. If you “pop” a patch, the changes made by that patch will vanish
from the directory tree. Quilt remembers which patches you have popped, though, so you can “push” a popped patch again,
and the directory tree will be restored to contain the modificationsin the patch. Most importantly, you can run the “refresh”
command at any time, and the topmost applied patch will be updated. This means that you can, at any time, change both
which patches are applied and what modifications those patches make.

Quilt knows nothing about revision control tools, so it works equally well on top of an unpacked tarball or a Subversion
working copy.

12.2.2. From patchwork quilt to Mercurial Queues

In mid-2005, Chris Mason took the features of quilt and wrote an extension that he called Mercurial Queues, which added
quilt-like behavior to Mercurial.

The key difference between quilt and MQ is that quilt knows nothing about revision control systems, while MQ is
integrated into Mercurial. Each patch that you push isrepresented asaMercurial changeset. Pop apatch, and the changeset
goes away .

Because quilt does not care about revision control tools, it is still atremendously useful piece of software to know about
for situations where you cannot use Mercurial and MQ.

12.3. The huge advantage of MQ

| cannot overstate the value that MQ offers through the unification of patches and revision control.

A major reason that patches have persisted in the free software and open source world—in spite of the availability of
increasingly capable revision control tools over the years—isthe agility they offer.

Traditional revision control tools make a permanent, irreversible record of everything that you do. While this has great
value, it's also somewhat stifling. I1f you want to perform a wild-eyed experiment, you have to be careful in how you go
about it, or you risk leaving unneeded—or worse, misleading or destabilising—traces of your missteps and errors in the
permanent revision record.

By contrast, MQ's marriage of distributed revision control with patches makes it much easier to isolate your work. Y our
patches live on top of normal revision history, and you can make them disappear or reappear at will. If you don't like a
patch, you can drop it. If a patch isn't quite as you want it to be, simply fix it—as many times as you need to, until you
have refined it into the form you desire.

As an example, the integration of patches with revision control makes understanding patches and debugging their effects
—and their interplay with the code they're based on—enormously easier. Since every applied patch has an associated
changeset, you can give hg log afile name to see which changesets and patches affected thefile. Y ou can use the hg bisect
command to binary-search through all changesets and applied patchesto see where a bug got introduced or fixed. Y ou can
use the hg annotate command to see which changeset or patch modified a particular line of a source file. And so on.

12.4. Understanding patches

Because MQ doesn't hide its patch-oriented nature, it is helpful to understand what patches are, and alittle about the tools
that work with them.

Thetraditional Unix diff command compares two files, and printsalist of differences between them. The patch command
understandsthese differencesasmodificationsto maketo afile. Takealook below for asimple example of these commands
in action.

$ echo "this is ny original thought' > oldfile
$ echo 'i have changed ny nind > newfile
$ diff -u oldfile newfile > tiny.patch

130

Managing change with Mercurial Queues

$ cat tiny.patch
- oldfile 2010-11-01 23:58:17.111738001 +0000
+++ newfile 2010-11-01 23:58:17.131738001 +0000
an-1 +1 @@
-this is nmy original thought
+i have changed ny m nd
$ patch < tiny.patch
patching file oldfile
$ cat oldfile
i have changed ny m nd

The type of file that diff generates (and patch takes asinput) iscalled a“ patch” or a“diff”; there is no difference between
apatch and a diff. (We'll use the term “patch”, since it's more commonly used.)

A patch file can start with arbitrary text; the patch command ignores this text, but MQ uses it as the commit message
when creating changesets. To find the beginning of the patch content, patch searches for the first line that starts with the
string “di ff -".

MQ works with unified diffs (patch can accept several other diff formats, but MQ doesn't). A unified diff contains two
kinds of header. The file header describes the file being modified; it contains the name of the file to modify. When patch
sees anew file header, it looks for afile with that name to start modifying.

After the file header comes a series of hunks. Each hunk starts with a header; this identifies the range of line numbers
within thefile that the hunk should modify. Following the header, ahunk starts and ends with afew (usually three) lines of
text from the unmodified file; these are called the context for the hunk. If there's only a small amount of context between
successive hunks, diff doesn't print a new hunk header; it just runs the hunks together, with afew lines of context between
modifications.

Each line of context begins with a space character. Within the hunk, aline that begins with “- " means “remove thisline,”
whilealinethat beginswith “+” means“insert thisline.” For example, alinethat is modified is represented by one deletion
and oneinsertion.

We will return to some of the more subtle aspects of patches later (in Section 12.6, “More about patches’), but you should
have enough information now to use MQ.

12.5. Getting started with Mercurial Queues

Because MQ isimplemented as an extension, you must explicitly enable before you can useit. (Y ou don't need to download
anything; MQ ships with the standard Mercurial distribution.) To enable MQ, edit your ~/ . hgr ¢ file, and add the lines
below.

[ext ensi ons]
hgext.ng =

Oncethe extension is enabled, it will make a number of new commands available. To verify that the extension isworking,
you can use hg help to seeif the ginit command is how available.

$ hg help qinit
hg ginit [-c]

init a new queue repository (DEPRECATED)
The queue repository is unversioned by default. If -c/--create-repo is
specified, ginit will create a separate nested repository for patches
(ginit -c may also be run later to convert an unversioned patch repository
into a versioned one). You can use gcommit to commt changes to this queue
repository

This command is deprecated. Wthout -c, it's inplied by other rel evant
commands. Wth -c, use "hg init --nmg" instead

opt i ons

-C --create-repo create queue repository

use "hg -v help ginit" to show gl obal options

131

Managing change with Mercurial Queues

12.

12.

You can use MQ with any Mercuria repository, and its commands only operate within that repository. To get started,
simply prepare the repository using the ginit command.

$ hg init ng-sandbox

$ cd ngy- sandbox

$ echo 'line 1' > filel

$ echo 'another line 1' > file2
$ hg add filel file2

$ hg conmit -mfirst change

$ hg qginit

This command creates an empty directory called . hg/ pat ches, where MQ will keep its metadata. As with many
Mercurial commands, the ginit command prints nothing if it succeeds.

5.1. Creating a new patch

To beginwork on anew patch, usethe gnew command. This command takes one argument, the name of the patch to create.

MQ will use this as the name of an actua fileinthe. hg/ pat ches directory, as you can see below.

$ hg tip

changeset : 0: 011f 7c5ff69e

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con
dat e: Mon Nov 01 23:58:26 2010 +0000
sunmary: first change

$ hg gnew first.patch

$ hg tip

changeset : 1: a632f 3c5222d

t ag: first.patch

t ag: ghase

t ag: gtip

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:58:26 2010 +0000
sunmary: [mg]: first.patch

$ |'s . hg/patches

first.patch series status

Also newly present inthe . hg/ pat ches directory are two other files, ser i es and st at us. Theseri es filelistsall
of the patchesthat M Q knows about for thisrepository, with one patch per line. Mercurial usesthe st at us filefor internal
book-keeping; it tracks al of the patches that MQ has applied in this repository.

Note

You may sometimes want to edit the ser i es file by hand; for example, to change the sequence in which
some patches are applied. However, manually editing the st at us file is amost always a bad idea, as it's
easy to corrupt MQ'sidea of what is happening.

Once you have created your new patch, you can edit filesin the working directory as you usually would. All of the normal
Mercurial commands, such as hg diff and hg annotate, work exactly as they did before.

5.2. Refreshing a patch

When you reach a point where you want to save your work, use the gr efr esh command to update the patch you are working
on.

S echo 'line 2' >> filel
$ hg diff
di ff -r a632f3c5222d filel

- alfilel Mon Nov 01 23:58:26 2010 +0000
+++ b/filel Mon Nov 01 23:58:27 2010 +0000
an-1,1 +1,2 @@

line 1
+line 2

132

Managing change with Mercurial Queues

$ hg grefresh

$ hg diff

$ hg tip --styl e=conpact --patch

1[first.patch, gbase, qtip,tip] 522abba82375 2010-11-01 23:58 +0000 bos
[mg]: first.patch

di ff -r 011f 7c5ff69e -r 522abba82375 filel
--- a/filel Mon Nov 01 23:58:26 2010 +0000
+++ b/filel Mon Nov 01 23:58:27 2010 +0000
an-1,1 +1,2 @@

line 1

+line 2

This command folds the changes you have made in the working directory into your patch, and updates its corresponding
changeset to contain those changes.

Y ou canrun gr efresh asoften asyoulike, soit'sagood way to “ checkpoint” your work. Refresh your patch at an opportune
time; try an experiment; and if the experiment doesn't work out, hg revert your modifications back to the last time you
refreshed.

$ echo 'line 3 >> filel

$ hg status

Mfilel

$ hg qrefresh

$ hg tip --style=conpact --patch

1[first.patch, gbase, qtip,tip] e7776816c58e 2010-11-01 23:58 +0000 bos
[mg]: first.patch

di ff -r 011f 7c5ff69e -r e7776816¢c58e filel
--- a/filel Mon Nov 01 23:58:26 2010 +0000
+++ b/filel Mon Nov 01 23:58:27 2010 +0000
a»-1,1 +1,3 @@

line 1

+line 2

+line 3

12.5.3. Stacking and tracking patches

Once you have finished working on a patch, or need to work on another, you can use the gnew command again to creste
anew patch. Mercurial will apply this patch on top of your existing patch.

$ hg gnew second. pat ch

$ hg | og --style=conpact --limt=2

2[gti p, second. patch, ti p] b4594771a2b3 2010-11-01 23:58 +0000 bos
[mg]: second. patch

1[first.patch, gbase] e7776816c58e 2010-11-01 23:58 +0000 bos
[mg]: first.patch

$ echo 'line 4 >> filel

$ hg qrefresh

$ hg tip --style=conpact --patch

2[gti p, second. patch, ti p] 5c¢2b24c0fc74 2010-11-01 23:58 +0000 bos
[mg]: second. patch

diff -r e7776816c58e -r 5c2b24c0fc74 filel
--- a/filel Mon Nov 01 23:58:27 2010 +0000
+++ b/ filel Mon Nov 01 23:58:28 2010 +0000
a-1,3 +1,4 @@

line 1

line
line
+l i ne

A WN

$ hg annotate filel
0: line 1
1. line 2
1: line 3

133

Managing change with Mercurial Queues

2: line 4 |

Notice that the patch contains the changes in our prior patch as part of its context (you can see this more clearly in the
output of hg annotate).

So far, with the exception of gnew and qrefresh, we've been careful to only use regular Mercurial commands. However,
MQ provides many commands that are easier to use when you are thinking about patches, asillustrated below.

$ hg qgseries
first.patch
second. pat ch
$ hg qapplied
first.patch
second. pat ch

e The gseries command lists every patch that MQ knows about in this repository, from oldest to newest (most recently
created).

» The gapplied command lists every patch that MQ has applied in this repository, again from oldest to newest (most
recently applied).

12.5.4. Manipulating the patch stack

The previous discussion implied that there must be a difference between “known™ and “applied” patches, and thereis. MQ
can manage a patch without it being applied in the repository.

An applied patch has a corresponding changeset in the repository, and the effects of the patch and changeset are visible
in the working directory. You can undo the application of a patch using the gpop command. MQ still knows about, or
manages, apopped patch, but the patch no longer has a corresponding changeset in therepository, and the working directory
does not contain the changes made by the patch. Figure 12.1, “Applied and unapplied patches in the MQ patch stack”
illustrates the difference between applied and tracked patches.

Figure 12.1. Applied and unapplied patchesin the M Q patch stack

present in series, { forbid-illegal-params.patch

but not applied fix-memory-leak.patch

topmost
changesets present R aHEl Lo

Y ou can reapply an unapplied, or popped, patch using the gpush command. This creates a new changeset to correspond to
the patch, and the patch's changes once again become present in the working directory. See below for examples of qpop
and gpush in action.

$ hg qapplied
first.patch
second. pat ch

$ hg gpop

poppi ng second. pat ch
now at: first.patch
$ hg gseries
first.patch
second. pat ch

$ hg qapplied
first.patch

$ cat filel

134

Managing change with Mercurial Queues

line 1
line 2
line 3

Notice that once we have popped a patch or two patches, the output of gseries remains the same, while that of gqapplied
has changed.

12.5.5. Pushing and popping many patches

While gpush and gpop each operate on a single patch at atime by default, you can push and pop many patches in one
go. The - a option to gpush causes it to push al unapplied patches, while the - a option to qpop causes it to pop all
applied patches. (For some more ways to push and pop many patches, see Section 12.8, “ Getting the best performance
out of MQ” below.)

$ hg gpush -a
appl yi ng second. pat ch
now at: second. patch
$ cat filel

I i ne
I i ne
I i ne
I i ne

A WN PR

12.5.6. Safety checks, and overriding them

Several MQ commands check the working directory before they do anything, and fail if they find any modifications. They
do thisto ensure that you won't lose any changes that you have made, but not yet incorporated into a patch. The example
below illustrates this; the gnew command will not create a new patch if there are outstanding changes, caused in this case
by thehgadd of fi | e3.

$ echo 'file 3, line 1' >> file3

$ hg gnew add-fil e3. patch

$ hg gnew -f add-file3.patch

abort: patch "add-file3.patch" already exists

Commands that check the working directory all take an “I know what I'm doing” option, which is aways named - f . The
exact meaning of - f depends on the command. For example, hg gnew - f will incorporate any outstanding changes into
the new patch it creates, but hg qpop - f will revert modifications to any files affected by the patch that it is popping. Be
sure to read the documentation for acommand's - f option before you useiit!

12.5.7. Working on several patches at once

The grefresh command always refreshes the topmost applied patch. This means that you can suspend work on one patch
(by refreshing it), pop or push to make a different patch the top, and work on that patch for awhile.

Here's an example that illustrates how you can use this ability. Let's say you're developing a new feature as two patches.
Thefirst is a change to the core of your software, and the second—Iayered on top of the first—changes the user interface
to use the code you just added to the core. If you notice a bug in the core while you're working on the Ul patch, it's easy
to fix the core. Simply grefresh the Ul patch to save your in-progress changes, and gpop down to the core patch. Fix the
core bug, gr efresh the core patch, and qpush back to the Ul patch to continue where you left off.

12.6. More about patches

MQ uses the GNU patch command to apply patches, so it's helpful to know a few more detailed aspects of how patch
works, and about patches themselves.

12.6.1. The strip count

If you look at the file headers in a patch, you will notice that the pathnames usually have an extra component on the front
that isn't present in the actual path name. Thisisaholdover from the way that people used to generate patches (people still
do this, but it's somewhat rare with modern revision control tools).

135

Managing change with Mercurial Queues

Alice would unpack atarball, edit her files, then decide that she wanted to create a patch. So she'd rename her working
directory, unpack the tarball again (hence the need for the rename), and use the - r and - N options to diff to recursively
generate a patch between the unmodified directory and the modified one. The result would be that the name of the
unmodified directory would be at the front of theleft-hand path in every file header, and the name of the modified directory
would be at the front of the right-hand path.

Since someone receiving a patch from the Alices of the net would be unlikely to have unmodified and modified directories
with exactly the same names, the patch command has a - p option that indicates the number of leading path name
components to strip when trying to apply a patch. This number is called the strip count.

Anoptionof “- p1” means*“useastrip count of one”. If patch seesafilenamef oo/ bar / baz inafileheader, it will strip
f 0o and try to patch afile named bar / baz. (Strictly speaking, the strip count refers to the number of path separators
(and the componentsthat go with them)) to strip. A strip count of onewill turnf oo/ bar intobar , but/ f oo/ bar (notice
the extraleading slash) into f oo/ bar .)

The “standard” strip count for patches is one; amost all patches contain one leading path name component that needs to
be stripped. Mercuria's hg diff command generates path names in this form, and the hg import command and MQ expect
patches to have a strip count of one.

If you receive a patch from someone that you want to add to your patch queue, and the patch needs a strip count other
than one, you cannot just gimport the patch, because gimport does not yet have a - p option (see issue 311 [http:/
www.selenic.com/mercurial/bts/issue311]). Your best bet is to gnew a patch of your own, then use patch -pN to apply
their patch, followed by hg addremoveto pick up any files added or removed by the patch, followed by hg grefresh. This
complexity may become unnecessary; see issue 311 [http://www.selenic.com/mercurial/bts/issue311] for details.

12.6.2. Strategies for applying a patch

When patch applies a hunk, it tries a handful of successively less accurate strategies to try to make the hunk apply. This
falling-back technique often makes it possible to take a patch that was generated against an old version of afile, and apply
it against a newer version of that file.

First, patch tries an exact match, where the line numbers, the context, and the text to be modified must apply exactly.
If it cannot make an exact match, it tries to find an exact match for the context, without honouring the line numbering
information. If this succeeds, it printsaline of output saying that the hunk was applied, but at some offset from the original
line number.

If a context-only match fails, patch removes the first and last lines of the context, and tries areduced context-only match.
If the hunk with reduced context succeeds, it prints amessage saying that it applied the hunk with afuzz factor (the number
after the fuzz factor indicates how many lines of context patch had to trim before the patch applied).

When neither of these techniques works, patch prints a message saying that the hunk in question was rejected. It saves
rejected hunks (also simply called “rejects’) to afile with the same name, and an added . r €] extension. It also saves an
unmodified copy of thefilewitha. or i g extension; the copy of the file without any extensions will contain any changes
made by hunksthat did apply cleanly. If you have a patch that modifiesf oo with six hunks, and one of them failsto apply,
you will have: an unmodified f 00. ori g, af 0o. rej containing one hunk, and f 0o, containing the changes made by
the five successful hunks.

12.6.3. Some quirks of patch representation

There are afew useful things to know about how patch works with files.
» Thisshould already be obvious, but patch cannot handle binary files.
» Neither doesit care about the executable hit; it creates new files as readable, but not executable.

 patch treats the removal of afile asadiff between the file to be removed and the empty file. So your idea of “| deleted
thisfile” looks like “every line of thisfile was deleted” in a patch.

* It treatsthe addition of afile asadiff between the empty file and thefile to be added. So in apatch, your idea of 1 added
thisfile” looks like “every line of thisfile was added”.

136

http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311
http://www.selenic.com/mercurial/bts/issue311

Managing change with Mercurial Queues

« It treats arenamed file asthe removal of the old name, and the addition of the new name. This means that renamed files
have a big footprint in patches. (Note also that Mercurial does not currently try to infer when files have been renamed
or copied in a patch.)

 patch cannot represent empty files, so you cannot use a patch to represent the notion “| added thisempty fileto thetree”.

12.6.4. Beware the fuzz

While applying a hunk at an offset, or with a fuzz factor, will often be completely successful, these inexact techniques
naturally leave open the possibility of corrupting the patched file. The most common cases typically involve applying a
patch twice, or at an incorrect location in the file. If patch or gpush ever mentions an offset or fuzz factor, you should
make sure that the modified files are correct afterwards.

It's often a good idea to refresh a patch that has applied with an offset or fuzz factor; refreshing the patch generates new
context information that will makeit apply cleanly. | say “often,” not “aways,” because sometimes refreshing a patch will
make it fail to apply against a different revision of the underlying files. In some cases, such as when you're maintaining

a patch that must sit on top of multiple versions of a source tree, it's acceptable to have a patch apply with some fuzz,
provided you've verified the results of the patching processin such cases.

12.6.5. Handling rejection

If gpush failsto apply apatch, it will print an error message and exit. If it hasleft . r ej filesbehind, it isusually best to
fix up the rejected hunks before you push more patches or do any further work.

If your patch used to apply cleanly, and no longer does because you've changed the underlying code that your patches
are based on, Mercurial Queues can help; see Section 12.9, “Updating your patches when the underlying code changes’
for details.

Unfortunately, there aren't any great techniques for dealing with rejected hunks. Most often, you'll need to view the. r ej
file and edit the target file, applying the rejected hunks by hand.

A Linux kernel hacker, Chris Mason (the author of Mercurial Queues), wrote atool called mpatch (http://oss.oracle.com/
~mason/mpatch/), which takes a simple approach to automating the application of hunks rejected by patch. The mpatch
command can help with four common reasons that a hunk may be rejected:

 The context in the middle of a hunk has changed.

» A hunk is missing some context at the beginning or end.

* A large hunk might apply better—either entirely or in part—if it was broken up into smaller hunks.

« A hunk removes lines with slightly different content than those currently present in thefile.

If you use mpatch, you should be doubly careful to check your results when you're done. In fact, mpatch enforces this

method of double-checking the tool's output, by automatically dropping you into amerge program when it has doneitsjab,
so that you can verify itswork and finish off any remaining merges.

12.7. More on patch management

Asyou grow familiar with MQ, you will find yourself wanting to perform other kinds of patch management operations.

12.7.1. Deleting unwanted patches

If you want to get rid of a patch, use the hg gdelete command to del ete the patch file and remove its entry from the patch
series. If you try to delete a patch that is still applied, hg gdelete will refuse.

[$ hg init nyrepo |

137

http://oss.oracle.com/~mason/mpatch/
http://oss.oracle.com/~mason/mpatch/

Managing change with Mercurial Queues

cd nyrepo

hg ginit

hg gnew bad. pat ch
echo a > a

hg add a

hg grefresh

hg qgdel et e bad. patch
abort: cannot delete applied patch bad. patch
$ hg gpop

poppi ng bad. pat ch
pat ch queue now enpty
$ hg gdel ete bad. patch

LR R R T R T T

12.7.2. Converting to and from permanent revisions

Once you're done working on a patch and want to turn it into a permanent changeset, use the hg gfinish command. Pass
arevision to the command to identify the patch that you want to turn into a regular changeset; this patch must already
be applied.

$ hg gnew good. pat ch

$ echo a > a

$ hg add a

$ hg gqrefresh -m' Good change

$ hg gfinish tip

$ hg qapplied

$ hg tip --styl e=conpact

o[tip] 90cch48c5a00 2010-11-01 23:57 +0000 bos
Good change

The hg gfinish command acceptsan - - al | or - a option, which turns all applied patches into regular changesets.

Itis also possible to turn an existing changeset into a patch, by passing the - r option to hg gimport.

$ hg qginport -r tip
$ hg qapplied
0.diff

Note that it only makes sense to convert a changeset into a patch if you have not propagated that changeset into any other
repositories. The imported changeset's ID will change every time you refresh the patch, which will make Mercuria treat
it as unrelated to the original changeset if you have pushed it somewhere else.

12.8. Getting the best performance out of MQ

MQ is very efficient at handling a large number of patches. | ran some performance experiments in mid-2006 for a talk
that | gave at the 2006 EuroPython conference (on modern hardware, you should expect better performance than you'll see
below). | used as my data set the Linux 2.6.17-mm1 patch series, which consists of 1,738 patches. | applied these on top
of aLinux kernel repository containing al 27,472 revisions between Linux 2.6.12-rc2 and Linux 2.6.17.

On my old, slow laptop, | was able to hg gpush - a all 1,738 patches in 3.5 minutes, and hg gpop - a them al in 30
seconds. (On a newer laptop, the time to push all patches dropped to two minutes.) | could grefresh one of the biggest
patches (which made 22,779 lines of changes to 287 files) in 6.6 seconds.

Clearly, MQ iswell suited to working in large trees, but there are afew tricks you can use to get the best performance of it.

First of al, try to “batch” operations together. Every time you run gpush or gpop, these commands scan the working
directory once to make sure you haven't made some changes and then forgotten to run grefresh. On asmall tree, the time
that this scan takes is unnoticeable. However, on a medium-sized tree (containing tens of thousands of files), it can take
asecond or more.

The gpush and gpop commands allow you to push and pop multiple patches at atime. Y ou can identify the “destination
patch” that you want to end up at. When you gpush with a destination specified, it will push patches until that patch is at
the top of the applied stack. When you gpop to adestination, MQ will pop patches until the destination patch is at the top.

138

Managing change with Mercurial Queues

You can identify a destination patch using either the name of the patch, or by number. If you use numeric addressing,
patches are counted from zero; this means that the first patch is zero, the second is one, and so on.

12.9. Updating your patches when the underlying
code changes

It's common to have a stack of patches on top of an underlying repository that you don't modify directly. If you're working
on changes to third-party code, or on afeature that istaking longer to devel op than the rate of change of the code beneath,
you will often need to sync up with the underlying code, and fix up any hunksin your patches that no longer apply. This
iscalled rebasing your patch series.

The simplest way to do thisisto hg gpop hg - a your patches, then hg pull changesinto the underlying repository, and
finally hg gqpush - a your patches again. MQ will stop pushing any time it runs across a patch that fails to apply during
conflicts, allowing you to fix your conflicts, gr efr esh the affected patch, and continue pushing until you have fixed your
entire stack.

This approach is easy to use and works well if you don't expect changes to the underlying code to affect how well your
patches apply. If your patch stack touches code that is modified frequently or invasively in the underlying repository,
however, fixing up rejected hunks by hand quickly becomes tiresome.

It'spossibleto partially automate the rebasing process. If your patches apply cleanly against somerevision of the underlying
repo, MQ can use thisinformation to help you to resolve conflicts between your patches and a different revision.

The processisalittleinvolved.
1. To begin, hg gpush -a all of your patches on top of the revision where you know that they apply cleanly.

2. Save abackup copy of your patch directory using hg qsavehg - e hg - c. This prints the name of the directory that
it has saved the patchesin. It will save the patchesto adirectory called . hg/ pat ches. N, where Nisasmall integer.
It also commits a “save changeset” on top of your applied patches; thisis for internal book-keeping, and records the
states of theser i es and st at us files.

3. Use hg pull to bring new changes into the underlying repository. (Don't run hg pull -u; see below for why.)
4. Update to the new tip revision, using hg update - C to override the patches you have pushed.

5. Merge al patches using hg qpush -m -a. The - moption to gpush tells MQ to perform athree-way merge if the patch
failsto apply.

During the hg gpush hg - m each patch inthe ser i es fileis applied normally. If a patch applies with fuzz or rejects,
MQ looks at the queue you gsaved, and performs a three-way merge with the corresponding changeset. This merge uses
Mercurial's norma merge machinery, so it may pop up a GUI merge tool to help you to resolve problems.

When you finish resolving the effects of a patch, MQ refreshes your patch based on the result of the merge.

At the end of this process, your repository will have one extra head from the old patch queue, and a copy of the old patch
gueue will bein. hg/ pat ches. N. You can remove the extra head using hg qpop -a -n patches.N or hg strip. You can
delete. hg/ pat ches. Nonceyou are sure that you no longer need it as a backup.

12.10. Identifying patches

MQ commands that work with patcheslet you refer to apatch either by using its name or by anumber. By nameis obvious
enough; pass the namef 00. pat ch to qpush, for example, and it will push patches until f 0o. pat ch isapplied.

Asashortcut, you can refer to apatch using both aname and anumeric offset; f 0o. pat ch- 2 means*“two patches before
f 0o. pat ch”, whilebar . pat ch+4 means “four patches after bar . pat ch”.

Referring to a patch by index isn't much different. Thefirst patch printed in the output of gseriesis patch zero (yes, it'sone
of those start-at-zero counting systems); the second is patch one; and so on.

139

Managing change with Mercurial Queues

MQ also makesit easy to work with patcheswhen you are using normal Mercurial commands. Every command that accepts
a changeset ID will also accept the name of an applied patch. MQ augments the tags normally in the repository with an
eponymous one for each applied patch. In addition, the specia tags gbase and qt i p identify the “bottom-most” and
topmost applied patches, respectively.

These additions to Mercuria's normal tagging capabilities make dealing with patches even more of a breeze.

» Want to patchbomb amailing list with your latest series of changes?

lhg email gbase:qtip |

(Don't know what “patchbombing” is? See Section 14.4, “ Send changes via email with the pat chbonb extension”.)

* Needto see all of the patches sincef 0o. pat ch that have touched filesin a subdirectory of your tree?

lhg Tog -r foo.patch:qtip subdir

Because MQ makes the names of patches available to the rest of Mercurial through its normal internal tag machinery, you
don't need to type in the entire name of a patch when you want to identify it by name.

Another nice consequence of representing patch names as tags is that when you run the hg log command, it will display
a patch's name as a tag, simply as part of its normal output. This makes it easy to visually distinguish applied patches
from underlying “normal” revisions. The following example shows afew normal Mercurial commands in use with applied

patches.
$ hg qapplied
first.patch
second. pat ch
$ hg log -r gbase:qtip
changeset : 1: 43ef b8a3077f
tag: first.patch
tag: gbase
user: Bryan O Sul |l i van <bos@er penti ne. con>
dat e: Mon Nov 01 23:58:21 2010 +0000
summary: [mg]: first.patch
changeset : 2:5e9347da6359
tag: qgtip
tag: second. pat ch
tag: tip
user: Bryan O Sul |l i van <bos@er penti ne. con»
dat e: Mon Nov 01 23:58:22 2010 +0000
summary: [mg]: second. patch
$ hg export second. patch
HG changeset patch
User Bryan O Sullivan <bos@erpenti ne. conp
Date 1288655902 0
Node | D 5e9347da63592ccd33a99b2acd10e497218aab47
Parent 43efb8a3077f9bdae5101f 91c903610861937f 23
[mg] : second. patch
di ff -r 43efb8a3077f -r 5e9347da6359 other.c
- /dev/null Thu Jan 01 00: 00: 00 1970 +0000
+++ b/ other.c Mon Nov 01 23:58:22 2010 +0000
@@-0,0 +1,1 @@
+doubl e u

12.11. Useful things to know about

There are anumber of aspects of MQ usage that don't fit tidily into sections of their own, but that are good to know. Here
they are, in one place.

» Normally, when you gpop a patch and gpush it again, the changeset that represents the patch after the pop/push will
have a different identity than the changeset that represented the hash beforehand. See Section B.1.14, “gpush—push
patches onto the stack” for information as to why thisis.

140

Managing change with Mercurial Queues

* It'snot agood ideato hg mer ge changes from another branch with a patch changeset, at least if you want to maintain the
“patchiness’ of that changeset and changesets below it on the patch stack. If you try to do this, it will appear to succeed,
but MQ will become confused.

12.12. Managing patches in arepository

Because MQ's . hg/ pat ches directory resides outside a Mercuria repository's working directory, the “underlying”
Mercurial repository knows nothing about the management or presence of patches.

This presents the interesting possibility of managing the contents of the patch directory asaMercurial repository initsown
right. This can be a useful way to work. For example, you can work on a patch for awhile, qrefresh it, then hg commit
the current state of the patch. Thisletsyou “roll back” to that version of the patch later on.

Y ou can then share different versions of the same patch stack among multiple underlying repositories. | use this when |
am developing a Linux kernel feature. | have a pristine copy of my kernel sources for each of several CPU architectures,
and a cloned repository under each that contains the patches | am working on. When | want to test a change on a different
architecture, | push my current patches to the patch repository associated with that kernel tree, pop and push all of my
patches, and build and test that kernel.

Managing patches in a repository makes it possible for multiple developers to work on the same patch series without
colliding with each other, all on top of an underlying source base that they may or may not control.

12.12.1. MQ support for patch repositories

MQ helpsyou to work withthe . hg/ pat ches directory as arepository; when you prepare arepository for working with
patches using ginit, you can passthehg - c optionto createthe. hg/ pat ches directory asaMercuria repository.

Note

If you forget to usethehg - ¢ option, you can simply go into the . hg/ pat ches directory at any time and
run hginit. Don't forget to add an entry for the st at us fileto the. hgi gnor e file, though

(hg ginit hg - ¢ doesthisfor you automatically); you really don't want to manage the st at us file.

As a convenience, if MQ notices that the . hg/ pat ches directory is a repository, it will automatically hg add every
patch that you create and import.

MQ provides a shortcut command, gcommit, that runs hg commit in the . hg/ pat ches directory. This saves some
bothersome typing.

Finally, as a convenience to manage the patch directory, you can define the alias mqg on Unix systems. For example, on
Linux systems using the bash shell, you can include the following snippet in your ~/ . bashr c.

llias ny="hg -R $(hg root)/. hg/ pat ches’ |

Y ou can then issue commands of the form mq pull from the main repository.

12.12.2. A few things to watch out for

MQ's support for working with a repository full of patchesis limited in afew small respects.

MQ cannot automatically detect changes that you make to the patch directory. If you hg pull, manually edit, or hg update
changes to patches or the ser i es file, you will have to hg gpop - a and then hg gpush - a in the underlying repository
to see those changes show up there. If you forget to do this, you can confuse MQ's idea of which patches are applied.

12.13. Third party tools for working with patches

Once you've been working with patches for awhile, you'll find yourself hungry for tools that will help you to understand
and manipul ate the patches you're dealing with.

141

Managing change with Mercurial Queues

The diffstat command [web:diffstat] generates a histogram of the modifications made to each file in a patch. It provides
a good way to “get a sense of” a patch—which files it affects, and how much change it introduces to each file and as a
whole. (I find that it's a good idea to use diffstat's - p option as a matter of course, as otherwise it will try to do clever
things with prefixes of file names that inevitably confuse at least me.)

$ diffstat -pl renpve-redundant-null-checks. patch
bash: diffstat: conmand not found
$ filterdiff -i '*/video/*' renove-redundant-null-checks. patch
- aldrivers/video/aullOOf b. c~renove-redundant - nul | - checks-before-free-in-drivers
+++ a/ drivers/video/ aull00f b. c
@d-743,8 +743,7 @void __exit aullOOfb_cl eanup(voi d)

{
driver _unregi ster(&ull00fb_driver)

- if (drv_info.opt_node)
kfree(drv_info. opt _node)
+ kfree(drv_info.opt_node)

}

nmodul e_i nit (aull00fb_init)

The pat chut i | s package [web:patchutils] is invaluable. It provides a set of small utilities that follow the “Unix
philosophy;” each does one useful thing with apatch. Thepat chut i | s command | use most isfilter diff, which extracts
subsets from a patch file. For example, given a patch that modifies hundreds of files across dozens of directories, asingle
invocation of filterdiff can generate a smaller patch that only touches files whose names match a particular glob pattern.
See Section 13.9.2, “Viewing the history of a patch” for another example.

12.14. Good ways to work with patches

Whether you are working on a patch series to submit to a free software or open source project, or a series that you intend
to treat as a sequence of regular changesets when you're done, you can use some simple techniques to keep your work
well organized.

Give your patches descriptive names. A good name for a patch might be r ewor k- devi ce- al | oc. pat ch, because
it will immediately give you a hint what the purpose of the patch is. Long names shouldn't be a problem; you won't be
typing the names often, but you will be running commands like gapplied and qtop over and over. Good naming becomes
especialy important when you have a number of patches to work with, or if you are juggling a number of different tasks
and your patches only get afraction of your attention.

Be aware of what patch you're working on. Use the qtop command and skim over the text of your patches frequently—for
example, using hg tip - p)—to be sure of where you stand. | have severa times worked on and qr efr eshed a patch other
than the one | intended, and it's often tricky to migrate changes into the right patch after making them in the wrong one.

For this reason, it is very much worth investing a little time to learn how to use some of the third-party tools | described
in Section 12.13, “Third party tools for working with patches’, particularly diffstat and filterdiff. The former will give
you a quick idea of what changes your patch is making, while the latter makes it easy to splice hunks selectively out of
one patch and into another.

12.15. MQ cookbook
12.15.1. Manage “trivial” patches

Because the overhead of dropping filesinto anew Mercuria repository isso low, it makesalot of senseto manage patches
thisway even if you simply want to make afew changesto a source tarball that you downloaded.

Begin by downloading and unpacking the source tarball, and turning it into a Mercurial repository.

$ downl oad netplug-1.2.5. tar.bz2

$ tar jxf netplug-1.2.5.tar.bz2

$ cd netplug-1.2.5

$ hg init

$ hg commit -q --addrenpve --nessage netplug-1.2.5

142

Managing change with Mercurial Queues

$ cd .

$ hg cl one netplug-1.2.5 netplug

updating to branch default

18 files updated, O files nerged, O files renpved, O files unresol ved

Continue by creating a patch stack and making your changes.

$ cd netplug

$ hg qinit

$ hg gnew -m ' fix build problemw th gcc 4' build-fix.patch
$ perl -pi -e 's/int addr_|en/socklen_t addr_len/' netlink.c
$ hg qrefresh

$ hg tip -p

changeset : 1: 8c4aldla59ee

t ag: bui | d-fi x. patch

t ag: ghase

t ag: gtip

t ag: tip

user: Bryan O Sul | i van <bos@er penti ne. con»

dat e: Mon Nov 01 23:58:24 2010 +0000

sunmary: fix build problemw th gcc 4

di ff -r 18e69d35fe44 -r 8cdaldla59ee netlink.c
--- a/netlink.c Mon Nov 01 23:58:23 2010 +0000
+++ b/ netlink.c Mon Nov 01 23:58:24 2010 +0000
@ -275,7 +275,7 @@
exit(1)
}

- int addr_len = sizeof (addr)
+ sockl en_t addr_l en = sizeof (addr)

if (getsockname(fd, (struct sockaddr *) &addr, &addr_len) == -1) {
do_| og(LOG ERR, "Coul d not get socket details: %);

Let's say afew weeks or months pass, and your package author releases a new version. First, bring their changes into the
repository.

$ hg qpop -a

poppi ng build-fix. patch

pat ch queue now enpty

$ cd .

$ downl oad netplug-1.2.8.tar.bz2

$ hg clone netplug-1.2.5 netplug-1.2.8

updating to branch default

18 files updated, O files nerged, O files renpved, O files unresol ved
cd netplug-1.2.8

hg locate -0 | xargs -0 rm

cd .

tar jxf netplug-1.2.8.tar.bz2

cd netplug-1.2.8

hg commt --addrenove --nessage netplug-1.2.8

R R R TR

The pipdline starting with hg locate above deletes all filesin the working directory, so that hg commit's - - addr enove
option can actually tell which files have really been removed in the newer version of the source.

Finally, you can apply your patches on top of the new tree.

$ cd ../netplug

$ hg pull ../netplug-1.2.8

pulling from../netplug-1.2.8
searchi ng for changes

addi ng changesets

addi ng mani fests

adding file changes

added 1 changesets with 12 changes to 12 files
(run 'hg update' to get a working copy)
$ hg gpush -a

(working directory not at a head)
appl yi ng build-fix.patch

143

Managing change with Mercurial Queues

12.

12.

jnow at: buil d-fix. patch

15.2. Combining entire patches

MQ provides acommand, gfold that lets you combine entire patches. This“folds’ the patches you name, in the order you
name them, into the topmost applied patch, and concatenates their descriptions onto the end of its description. The patches
that you fold must be unapplied before you fold them.

The order in which you fold patches matters. If your topmost applied patch isf 00, and you gfold bar and quux into it,
you will end up with a patch that has the same effect as if you applied first f 00, then bar , followed by quux.

15.3. Merging part of one patch into another

Merging part of one patch into another is more difficult than combining entire patches.

If you want to move changes to entire files, you can use filterdiff's- i and - x optionsto choose the modifications to snip
out of one patch, concatenating its output onto the end of the patch you want to merge into. You usualy won't need to
modify the patch you've merged the changes from. Instead, MQ will report some rejected hunks when you gpush it (from
the hunks you moved into the other patch), and you can simply qr efr esh the patch to drop the duplicate hunks.

If you have a patch that has multiple hunks modifying a file, and you only want to move a few of those hunks, the job
becomes more messy, but you can still partly automate it. Use Isdiff -nvv to print some metadata about the patch.

$ | sdiff -nvv renpve-redundant-nul | -checks. patch
22 File #1 al/ drivers/char/agp/ sgi -agp. c

24 Hunk #1 static int __devinit agp_sgi_init(void)
37 File #2 a/ drivers/char/hvcs. c

39 Hunk #1 static struct tty_operations hvcs_ops =
53 Hunk #2 static int hvcs_alloc_index_list(int n)
69 File #3 a/ drivers/ message/ fusion/ nmptfc.c

71 Hunk #1 nptfc_Get FcDevPageO(MPT_ADAPTER *ioc, in
85 File #4 a/ drivers/ nessage/ fusi on/ npt sas. c

87 Hunk #1 nptsas_probe_hba_phys(MPT_ADAPTER *i oc)
98 File #5 a/drivers/net/fs_enet/fs_enet-mi.c

100 Hunk #1 static struct fs_enet_mii_bus *create_bu
111 File #6 a/drivers/net/wrel ess/ipw2200.c

113 Hunk #1 static struct ipw fw error *ipw alloc_er
126 Hunk #2 static ssize_t clear_error(struct device
140 Hunk #3 static void ipw_irq_tasklet(struct ipw.p
150 Hunk #4 static void ipw_pci_renove(struct pci_de
164 File #7 a/drivers/scsi/libata-scsi.c

166 Hunk #1 int ata_cnd_ioctl (struct scsi_device *sc
178 File #8 a/ drivers/video/ aull00fb. c

180 Hunk #1 void __exit aullOOfb_cl eanup(voi d)

This command prints three different kinds of number:

* (inthefirst column) afile number to identify each file modified in the patch;

¢ (on the next line, indented) the line number within a modified file where a hunk starts; and
e (onthe sameline) ahunk number to identify that hunk.

You'll have to use some visual inspection, and reading of the patch, to identify the file and hunk numbers you'll want, but
you can then pass them to to filterdiff's- - fi | es and - - hunks options, to select exactly the file and hunk you want
to extract.

Once you have this hunk, you can concatenate it onto the end of your destination patch and continue with the remainder
of Section 12.15.2, “Combining entire patches’.

12.16. Differences between quilt and MQ

If you are already familiar with quilt, MQ provides a similar command set. There are a few differences in the way that
it works.

144

Managing change with Mercurial Queues

[T 1]

Y ouwill aready have noticed that most quilt commandshave M Q counterpartsthat simply beginwitha“q”. Theexceptions
are quilt's add and r enpve commands, the counterparts for which are the normal Mercurial hg add and hg remove
commands. Thereisno MQ equivalent of the quilt edi t command.

145

Chapter 13. Advanced uses of Mercurial
Queues

While it's easy to pick up straightforward uses of Mercurial Queues, use of a little discipline and some of MQ's less
frequently used capabilities makesiit possible to work in complicated development environments.

In this chapter, | will use as an example atechnique | have used to manage the development of an Infiniband device driver
for the Linux kernel. The driver in question is large (at least as drivers go), with 25,000 lines of code spread across 35
source files. It is maintained by a small team of developers.

While much of the material in this chapter is specific to Linux, the same principles apply to any code base for which you're
not the primary owner, and upon which you need to do alot of development.

13.1. The problem of many targets

TheLinux kernel changesrapidly, and has never beeninternally stable; devel opersfrequently make drastic changes between
releases. This means that a version of the driver that works well with a particular released version of the kernel will not
even compile correctly againgt, typically, any other version.

To maintain adriver, we have to keep a number of distinct versions of Linux in mind.

» Onetarget is the main Linux kernel development tree. Maintenance of the code is in this case partly shared by other
developersin the kernel community, who make “ drive-by” modificationsto the driver as they develop and refine kernel
subsystems.

» We also maintain a number of “backports’ to older versions of the Linux kernel, to support the needs of customers who
arerunning older Linux distributions that do not incorporate our drivers. (To backport apiece of codeisto modify it to
work in an older version of its target environment than the version it was developed for.)

 Finally, we make software releases on a schedule that is necessarily not aligned with those used by Linux distributors
and kernel developers, so that we can deliver new features to customers without forcing them to upgrade their entire
kernels or distributions.

13.1.1. Tempting approaches that don't work well

There are two “standard” ways to maintain a piece of software that has to target many different environments.

Thefirst isto maintain a number of branches, each intended for a single target. The trouble with this approach is that you
must maintain iron discipline in the flow of changes between repositories. A new feature or bug fix must start lifein a
“pristing” repository, then percolate out to every backport repository. Backport changes are more limited in the branches
they should propagate to; abackport change that is applied to abranch where it doesn't belong will probably stop the driver
from compiling.

The second isto maintain asingle sourcetreefilled with conditional statementsthat turn chunks of code on or of f depending
on theintended target. Because these “ifdefs’ are not allowed in the Linux kernel tree, amanual or automatic process must
be followed to strip them out and yield a clean tree. A code base maintained in this fashion rapidly becomes arat's nest of
conditional blocks that are difficult to understand and maintain.

Neither of these approachesiswell suited to a situation where you don't “own” the canonical copy of a source tree. In the
case of aLinux driver that is distributed with the standard kernel, Linus's tree contains the copy of the code that will be
treated by the world as canonical. The upstream version of “my” driver can be modified by people | don't know, without
me even finding out about it until after the changes show up in Linusstree.

These approaches have the added weakness of making it difficult to generate well-formed patches to submit upstream.

In principle, Mercurial Queues seems like a good candidate to manage a development scenario such as the above. While
thisisindeed the case, MQ contains a few added features that make the job more pleasant.

146

Advanced uses of Mercurial Queues

13.2. Conditionally applying patches with guards

Perhaps the best way to maintain sanity with so many targetsisto be able to choose specific patches to apply for agiven
situation. MQ provides afeature called “guards’ (which originates with quilt's guar ds command) that does just this. To
start off, let's create a ssimple repository for experimenting in.

hg ginit

hg gnew hel | 0. pat ch
echo hello > hello

hg add hello

hg grefresh

hg gnew goodbye. pat ch
echo goodbye > goodbye
hg add goodbye

hg grefresh

LR R T A T A T T A

This gives us a tiny repository that contains two patches that don't have any dependencies on each other, because they
touch different files.

The idea behind conditional application is that you can “tag” a patch with a guard, which is simply atext string of your
choosing, then tell MQ to select specific guards to use when applying patches. MQ will then either apply, or skip over, a
guarded patch, depending on the guards that you have selected.

A patch can have an arbitrary number of guards; each oneispositive (“apply thispatchif thisguard isselected”) or negative
(“skip this patch if this guard is selected”). A patch with no guardsis always applied.

13.3. Controlling the guards on a patch

The qguard command lets you determine which guards should apply to a patch, or display the guards that are already in
effect. Without any arguments, it displays the guards on the current topmost patch.

$ hg qguard
goodbye. pat ch: unguar ded

To set apositive guard on a patch, prefix the name of the guard with a*“+”.

$ hg qguard +foo
$ hg qguard
goodbye. pat ch: +f oo

To set anegative guard on a patch, prefix the name of the guard witha“- .

$ hg qguard -- hello.patch -quux
$ hg qguard hel | 0. patch
hel | 0. pat ch: -quux

Notice that we prefixed the arguments to the hg qguard command with a- - here, so that Mercurial would not interpret
thetext - quux as an option.

Setting vs. modifying
The qguard command sets the guards on a patch; it doesn't modify them. What this means is that if you
run hg qguard +a +b on a patch, then hg gguard +c on the same patch, the only guard that will be set on

it afterwardsis +c.

Mercurial storesguardsintheser i es file; theforminwhich they are stored is easy both to understand and to edit by hand.
(In other words, you don't have to use the qguar d command if you don't want to; it's okay to simply edit theser i es file)

$ cat .hg/patches/series
hel | 0. pat ch #- quux
goodbye. pat ch #+f oo

147

Advanced uses of Mercurial Queues

13.4. Selecting the guards to use

The gselect command determines which guards are active at a given time. The effect of thisis to determine which patches
MQ will apply the next time you run gpush. It has no other effect; in particular, it doesn't do anything to patches that
are aready applied.

With no arguments, the gselect command lists the guards currently in effect, one per line of output. Each argument is
treated as the name of a guard to apply.

$ hg qpop -a

poppi ng goodbye. pat ch

poppi ng hel |l o. patch

pat ch queue now enpty

$ hg gsel ect

no active guards

$ hg gsel ect foo

nunmber of unguarded, unapplied patches has changed from1l to 2
$ hg gsel ect

f oo

In case you're interested, the currently selected guards are stored in the guar ds file.

$ cat .hg/patches/guards
f oo

We can see the effect the selected guards have when we run gpush.

$ hg gpush -a

appl yi ng hel |l o. patch
appl yi ng goodbye. pat ch
now at: goodbye. patch

A guard cannot start with a “+” or “- " character. The name of a guard must not contain white space, but most other
characters are acceptable. If you try to use aguard with an invalid name, MQ will complain:

$ hg gsel ect +foo
abort: guard '+foo' starts with invalid character: '+

Changing the selected guards changes the patches that are applied.

$ hg gsel ect quux

nunber of guarded, applied patches has changed fromO to 2
$ hg qpop -a

poppi ng goodbye. pat ch

poppi ng hel |l o. patch

pat ch queue now enpty

$ hg gpush -a

ski ppi ng goodbye. patch - guarded by ['+fo0']

Y ou can see in the example below that negative guards take precedence over positive guards.

$ hg gsel ect foo bar

nunber of unguarded, unapplied patches has changed fromO0 to 2
$ hg qpop -a

no patches applied

$ hg gpush -a

appl yi ng hel |l o. patch

appl yi ng goodbye. pat ch

now at: goodbye. patch

13.5. MQ's rules for applying patches

The rules that MQ uses when deciding whether to apply a patch are as follows.

* A patch that has no guardsis always applied.

« If the patch has any negative guard that matches any currently selected guard, the patch is skipped.

148

Advanced uses of Mercurial Queues

« If the patch has any positive guard that matches any currently selected guard, the patch is applied.

« If the patch has positive or negative guards, but none matches any currently selected guard, the patch is skipped.

13.6. Trimming the work environment

In working on the device driver | mentioned earlier, | don't apply the patches to anormal Linux kernel tree. Instead, | use
arepository that contains only a snapshot of the source files and headers that are relevant to Infiniband development. This
repository is 1% the size of akernel repository, soit's easier to work with.

| then choose a “base” version on top of which the patches are applied. This is a snapshot of the Linux kernel tree as of
arevision of my choosing. When | take the snapshot, | record the changeset 1D from the kernel repository in the commit
message. Since the snapshot preserves the “shape” and content of the relevant parts of the kernel tree, | can apply my
patches on top of either my tiny repository or a normal kernel tree.

Normally, the base tree atop which the patches apply should be asnapshot of avery recent upstream tree. Thisbest facilitates
the development of patches that can easily be submitted upstream with few or no modifications.

13.7. Dividing up the seri es file

| categorise the patchesin the seri es file into a number of logical groups. Each section of like patches begins with a
block of comments that describes the purpose of the patches that follow.

The sequence of patch groups that | maintain follows. The ordering of these groups is important; I'll describe why after
| introduce the groups.

» The“accepted” group. Patches that the development team has submitted to the maintainer of the Infiniband subsystem,
and which he has accepted, but which are not present in the snapshot that the tiny repository isbased on. These are “read
only” patches, present only to transform the tree into asimilar state asit isin the upstream maintainer's repository.

e The “rework” group. Patches that | have submitted, but that the upstream maintainer has requested modifications to
before he will accept them.

» The “pending” group. Patches that | have not yet submitted to the upstream maintainer, but which we have finished
working on. These will be “read only” for awhile. If the upstream maintainer accepts them upon submission, I'll move
them to the end of the “ accepted” group. If he requeststhat | modify any, I'll move them to the beginning of the“ rework”

group.
» The“inprogress’ group. Patches that are actively being devel oped, and should not be submitted anywhere yet.
» The“backport” group. Patches that adapt the source tree to older versions of the kernel tree.

» The*"do not ship” group. Patchesthat for some reason should never be submitted upstream. For example, one such patch
might change embedded driver identification strings to make it easier to distinguish, in the field, between an out-of-tree
version of the driver and a version shipped by a distribution vendor.

Now to return to the reasons for ordering groups of patches in this way. We would like the lowest patches in the stack to
be as stable as possible, so that we will not need to rework higher patches due to changes in context. Putting patches that
will never be changed firstinthe ser i es file serves this purpose.

We would also like the patches that we know we'll need to modify to be applied on top of a source tree that resembles the
upstream tree as closely as possible. Thisiswhy we keep accepted patches around for awhile.

The “backport” and “do not ship” patches float at the end of the ser i es file. The backport patches must be applied on
top of all other patches, and the “do not ship” patches might as well stay out of harm’'s way.

13.8. Maintaining the patch series

In my work, | use anumber of guards to control which patches are to be applied.

149

Advanced uses of Mercurial Queues

» “Accepted” patches are guarded with accept ed. | enable this guard most of the time. When I'm applying the patches
on top of atree where the patches are already present, | can turn this patch off, and the patches that follow it will apply
cleanly.

 Patchesthat are“finished”, but not yet submitted, have no guards. If I'm applying the patch stack to acopy of the upstream
tree, | don't need to enable any guardsin order to get areasonably safe source tree.

» Those patches that need reworking before being resubmitted are guarded with r ewor k.
* For those patches that are still under development, | usedevel .

A backport patch may have several guards, one for each version of the kernel to which it applies. For example, a patch
that backports a piece of code to 2.6.9 will havea?2. 6. 9 guard.

This variety of guards gives me considerable flexibility in determining what kind of source tree | want to end up with.
For most situations, the selection of appropriate guards is automated during the build process, but | can manually tune the
guards to use for less common circumstances.

13.8.1. The art of writing backport patches

Using MQ, writing a backport patch is a simple process. All such a patch has to do is modify a piece of code that uses
a kernel feature not present in the older version of the kernel, so that the driver continues to work correctly under that
older version.

A useful goal when writing a good backport patch is to make your code look as if it was written for the older version of
the kernel you're targeting. The less obtrusive the patch, the easier it will be to understand and maintain. If you're writing a
collection of backport patches to avoid the “rat's nest” effect of lots of #i f def s (hunks of source code that are only used
conditionally) in your code, don't introduce version-dependent #i f def sinto the patches. Instead, write several patches,
each of which makes unconditional changes, and control their application using guards.

There are two reasons to divide backport patches into a distinct group, away from the “regular” patches whose effects
they modify. The first is that intermingling the two makes it more difficult to use atool like the pat chbonmb extension
to automate the process of submitting the patches to an upstream maintainer. The second is that a backport patch could
perturb the context in which a subsequent regular patch is applied, making it impossible to apply the regular patch cleanly
without the earlier backport patch already being applied.

13.9. Useful tips for developing with MQ

13.9.1. Organising patches in directories

If you'reworking on asubstantial project with MQ, it's not difficult to accumulate alarge number of patches. For example,
| have one patch repository that contains over 250 patches.

If you can group these patches into separate logical categories, you can if you like store them in different directories; MQ
has no problems with patch names that contain path separators.

13.9.2. Viewing the history of a patch

If you're developing a set of patches over along time, it's a good idea to maintain them in a repository, as discussed in
Section 12.12, “Managing patches in arepository”. If you do so, you'll quickly discover that using the hg diff command
to look at the history of changes to a patch is unworkable. Thisisin part because you're looking at the second derivative
of the real code (a diff of adiff), but also because MQ adds noise to the process by modifying time stamps and directory
names when it updates a patch.

However, you canusetheext di f f extension, whichisbundled with Mercuria, to turn adiff of two versionsof apatchinto
something readable. To do this, you will need athird-party package called pat chut i | s [web:patchutils]. This provides
a command named inter diff, which shows the differences between two diffs as a diff. Used on two versions of the same
diff, it generates a diff that represents the diff from the first to the second version.

150

Advanced uses of Mercurial Queues

You can enabletheext di f f extensionintheusual way, by adding alinetotheext ensi ons section of your ~/ . hgr c.

[ext ensi ons]
extdi ff =

Theinterdiff command expectsto be passed the names of two files, but theext di f f extension passesthe programit runs
apair of directories, each of which can contain an arbitrary number of files. We thus need a small program that will run
interdiff on each pair of filesin these two directories. This program is available ashg- i nt er di f f inthe exanpl es
directory of the source code repository that accompanies this book.

Withthehg- i nt er di f f programinyour shell'ssearch path, you can runit asfollows, frominsidean MQ patch directory:

lhg extdiff -p hg-interdiff -r A B ny-change. patch |

Since you'll probably want to use this long-winded command a lot, you can get hgext to make it available as a normal
Mercurial command, again by editing your ~/ . hgr c.

[extdiff]
cmd.interdiff = hg-interdiff

This directs hgext to make an i nt erdi ff command available, so you can now shorten the previous invocation of
extdiff to something alittle more wieldy.

lhg interdiff -r A B ny-change. patch |

Note

Theinter diff command workswell only if the underlying files against which versions of apatch are generated
remain the same. If you create a patch, modify the underlying files, and then regenerate the patch, inter diff
may not produce useful output.

Theext di ff extension is useful for more than merely improving the presentation of MQ patches. To read more about
it, go to Section 14.2, “Flexible diff support with theext di f f extension”.

151

Chapter 14. Adding functionality with
extensions

Whilethe core of Mercuria is quite complete from afunctionality standpoint, it's deliberately shorn of fancy features. This
approach of preserving simplicity keeps the software easy to deal with for both maintainers and users.

However, Mercurial doesn't box you inwith an inflexible command set: you can add featuresto it asextensions (sometimes
known as plugins). We've already discussed afew of these extensionsin earlier chapters.

» Section 3.3, “Simplifying the pull-merge-commit sequence” covers the f et ch extension; this combines pulling new
changes and merging them with local changes into a single command, fetch.

* In Chapter 10, Handling repository events with hooks, we covered several extensions that are useful for hook-related
functionality: acl adds access control lists; bugzi I | a adds integration with the Bugzilla bug tracking system; and
not i f y sends notification emails on new changes.

» The Mercurial Queues patch management extension is so invaluable that it merits two chapters and an appendix all to
itself. Chapter 12, Managing change with Mercurial Queues covers the basics; Chapter 13, Advanced uses of Mercurial
Queues discusses advanced topics; and Appendix B, Mercurial Queues reference goes into detail on each command.

In this chapter, we'll cover some of the other extensions that are available for Mercurial, and briefly touch on some of the
machinery you'll need to know about if you want to write an extension of your own.

» InSection 14.1, “Improve performancewith thei not i f y extension”, we'll discussthe possibility of huge performance
improvements using thei not i f y extension.

14.1. Improve performance with thei notify
extension

Areyou interested in having some of the most common Mercurial operations run as much as a hundred times faster? Read
on!

Mercurial has great performance under normal circumstances. For example, when you run the hg status command,
Mercurial has to scan amost every directory and file in your repository so that it can display file status. Many other
Mercurial commands need to do the same work behind the scenes; for example, the hg diff command uses the status
machinery to avoid doing an expensive comparison operation on files that obviously haven't changed.

Because obtaining file status is crucial to good performance, the authors of Mercurial have optimised this code to within
aninch of itslife. However, there's no avoiding the fact that when you run hg status, Mercurial isgoing to have to perform
at least one expensive system call for each managed file to determine whether it's changed since the last time Mercuria
checked. For a sufficiently large repository, this can take along time.

To put anumber on the magnitude of this effect, | created arepository containing 150,000 managed files. | timed hg status
as taking ten seconds to run, even when none of those files had been modified.

Many modern operating systems contain a file notification facility. If a program signs up to an appropriate service, the
operating system will notify it every time afile of interest is created, modified, or deleted. On Linux systems, the kernel
component that doesthisiscaledi noti fy.

Mercuria'si not i f y extensiontalkstothekernel'si not i f y component to optimise hg statuscommands. Theextension
has two components. A daemon sits in the background and receives notifications from the i not i f y subsystem. It also
listens for connections from aregular Mercurial command. The extension modifies Mercurial's behavior so that instead of
scanning the filesystem, it queries the daemon. Since the daemon has perfect information about the state of the repository,
it can respond with a result instantaneously, avoiding the need to scan every directory and file in the repository.

Recall the ten seconds that | measured plain Mercurial as taking to run hg status on a 150,000 file repository. With the
i noti fy extension enabled, the time dropped to 0.1 seconds, afactor of one hundred faster.

152

Adding functionality with extensions

Before we continue, please pay attention to some caveats.

Thei not i fy extension is Linux-specific. Because it interfaces directly to the Linux kernel'si not i f y subsystem, it
does not work on other operating systems.

It should work on any Linux distribution that was rel eased after early 2005. Older distributions are likely to have akernel
that lacksi noti fy, or aversion of gl i bc that does not have the necessary interfacing support.

Not all filesystems are suitable for usewiththei not i f y extension. Network filesystems such as NFS are anon-starter,
for example, particularly if you're running Mercurial on several systems, all mounting the same network filesystem. The
kernel'si not i fy system has no way of knowing about changes made on another system. Most local filesystems (e.g.
ext3, XFS, ReiserFS) should work fine.

Thei noti fy extension is not yet shipped with Mercuria as of May 2007, so it's a little more involved to set up than
other extensions. But the performance improvement is worth it!

The extension currently comes in two parts: a set of patches to the Mercuria source code, and alibrary of Python bindings
tothei noti fy subsystem.

Note

There are two Python i not i f y binding libraries. One of them is called pyi not i f y, and is packaged by
some Linux distributions as pyt hon-i noti fy. Thisis not the one you'll need, as it is too buggy and
inefficient to be practical.

To get going, it's best to already have a functioning copy of Mercurial installed.

Note

If you follow theinstructionsbelow, you'll ber eplacing and overwriting any existing installation of Mercurial
that you might already have, using the latest “bleeding edge” Mercurial code. Don't say you weren't warned!

. Clone the Pythoni not i f y binding repository. Build and install it.

hg clone http://hg. kubl ai . coni python/inotify
cd inotify

pyt hon setup.py build --force

sudo python setup.py install --skip-build

. Clone the cr ew Mercuria repository. Clonethei not i fy patch repository so that Mercurial Queues will be able to

apply patchesto your cope of the cr ew repository.

hg clone http://hg.intevation.org/ mercurial/crew
hg clone crew inotify
hg clone http://hg. kubl ai . com nercurial /patches/inotify inotify/.hg/patches

. Make sure that you have the Mercurial Queues extension, n, enabled. If you've never used MQ, read Section 12.5,

“Getting started with Mercurial Queues’ to get started quickly.

. Gointothei not i fy repo, and apply al of thei not i fy patchesusingthehg - a option to the gpush command.
cd inotify
hg qpush -a

. If you get an error message from gpush, you should not continue. Instead, ask for help.

. Build and install the patched version of Mercurial.

pyt hon setup.py build --force
sudo python setup.py install --skip-build

Once you've build a suitably patched version of Mercurial, all you need to do to enable thei not i fy extension is add
an entry toyour ~/ . hgrc.

153

Adding functionality with extensions

[extensions] inotify =

Whenthei not i f y extension is enabled, Mercurial will automatically and transparently start the status daemon the first
time you run a command that needs status in arepository. It runs one status daemon per repository.

The status daemon is started silently, and runs in the background. If you look at alist of running processes after you've
enabled the i not i fy extension and run a few commands in different repositories, you'll thus see a few hg processes
sitting around, waiting for updates from the kernel and queries from Mercurial.

The first time you run a Mercurial command in a repository when you have thei not i f y extension enabled, it will run
with about the same performance as a norma Mercurial command. This is because the status daemon needs to perform a
normal status scan so that it has abaseline against which to apply later updates from the kernel. However, every subsequent
command that does any kind of status check should be noticeably faster on repositories of even fairly modest size. Better
yet, the bigger your repository is, the greater a performance advantage you'll see. Thei not i f y daemon makes status
operations almost instantaneous on repositories of all sizes!

If you like, you can manually start a status daemon using the inser ve command. This gives you slightly finer control over
how the daemon ought to run. This command will of course only be available whenthei not i f y extension is enabled.

When you're using thei not i fy extension, you should notice no difference at all in Mercurial's behavior, with the sole
exception of status-related commands running a whole lot faster than they used to. You should specifically expect that

commands will not print different output; neither should they give different results. If either of these situations occurs,
please report a bug.

14.2. Flexible diff support with the ext di f f
extension

Mercurial's built-in hg diff command outputs plaintext unified diffs.

$ hg diff
di ff -r 549b0d49f 03f nyfile

- a/nyfile Mon Nov 01 23:58:11 2010 +0000
+++ b/ nyfile Mon Nov 01 23:58:11 2010 +0000
an-1,1 +1,2 @@
The first line.
+The second |ine

If you would like to use an external tool to display modifications, you'll want to use the ext di f f extension. This will
let you use, for example, agraphical diff tool.

Theext di f f extensionisbundled with Mercurial, soit'seasy to set up. Intheext ensi ons section of your ~/ . hgr c,
simply add a one-line entry to enable the extension.

[ext ensi ons]
extdi ff =

This introduces a command named extdiff, which by default uses your system's diff command to generate a unified diff
in the same form as the built-in hg diff command.

$ hg extdiff
- a.549b0d49f 03f/nyfil e 2010-11-01 23:58:11.291738001 +0000
+++ /tnp/ extdi ff MYWII /a/ nyfile 2010-11-01 23:58:11. 071738001 +0000
a»-1 +1,2 @@
The first line.
+The second |ine

The result won't be exactly the same as with the built-in hg diff variations, because the output of diff varies from one
system to another, even when passed the same options.

Asthe “maki ng snapshot” lines of output above imply, the extdiff command works by creating two snapshots of
your source tree. The first snapshot is of the source revision; the second, of the target revision or working directory. The

154

Adding functionality with extensions

extdiff command generates these snapshots in atemporary directory, passes the name of each directory to an externa diff
viewer, then deletes the temporary directory. For efficiency, it only snapshots the directories and files that have changed
between the two revisions.

Snapshot directory names have the same base name as your repository. If your repository path is/ quux/ bar/ f oo,
then f oo will be the name of each snapshot directory. Each snapshot directory name has its changeset ID appended, if
appropriate. If asnapshot isof revisiona631acal083f , thedirectory will benamedf 0co. a631acal083f . A snapshot
of theworking directory won't have achangeset I D appended, so it would just bef 0o inthisexample. To seewhat thislooks
likein practice, ook again at the extdiff example above. Notice that the diff has the snapshot directory names embedded
in its header.

The extdiff command accepts two important options. The hg - p option lets you choose a program to view differences
with, instead of diff. With thehg - o option, you can change the options that extdiff passes to the program (by default,
these options are “- Npr u”, which only make sense if you're running diff). In other respects, the extdiff command acts
similarly to the built-in hg diff command: you use the same option names, syntax, and arguments to specify the revisions
you want, the files you want, and so on.

Asan example, here's how to run the normal system diff command, getting it to generate context diffs (using the - ¢ option)
instead of unified diffs, and five lines of context instead of the default three (passing 5 as the argument to the - C option).

$ hg extdiff -o -NprcCs
*** a.549b0d49f 03f/ nmyfile Mon Nov 1 23:58:11 2010
- /tnp/extdi ff MYWI /a/nyfile Mon Nov 1 23:58:11 2010

kkkkkhkhkhkkdkkhkhkhkkkxk
Ik * % 1 * k% %

- 1,2 ----

The first |ine.
+ The second line

Launching avisual diff tool isjust as easy. Here's how to launch the kdiff3 viewer.

hg extdiff -p kdiff3 -o

If your diff viewing command can't deal with directories, you can easily work around this with a little scripting. For an
example of such scripting in action with the n extension and the interdiff command, see Section 13.9.2, “Viewing the
history of a patch”.

14.2.1. Defining command aliases

It can be cumbersome to remember the options to both the extdiff command and the diff viewer you want to use, so the
ext di ff extension lets you define new commands that will invoke your diff viewer with exactly the right options.

All you need to do isedit your ~/ . hgr c, and add a section named ext di f f . Inside this section, you can define multiple
commands. Here's how to add a kdi f f 3 command. Once you've defined this, you can type “hg kdi f f 3” and the
ext di ff extension will run kdiff3 for you.

[extdiff]
crd. kdi ff3 =

If you leave the right hand side of the definition empty, as above, theext di f f extension uses the name of the command
you defined as the name of the external program to run. But these names don't have to be the same. Here, we define a
command named “hg wi bbl e”, which runs kdiff3.

[extdiff]
cnd. wi bbl e = kdi ff3

You can also specify the default options that you want to invoke your diff viewing program with. The prefix to use is
“opt s.”, followed by the name of the command to which the options apply. This example definesa“hg vi ndi f f”
command that runsthe vim editor'sDi r Di f f extension.

[extdiff]
cmd. vi mdi f f
opts. vindi ff

vim
-f "+next' '+execute "DirDiff" argv(0) argv(1l)

155

Adding functionality with extensions

14.3. Cherrypicking changes with the t r anspl ant
extension

Need to have along chat with Brendan about this.

14.4. Send changes via email with the pat chbonb
extension

Many projects have a culture of “change review”, in which people send their modifications to a mailing list for others to
read and comment on before they commit the final version to a shared repository. Some projects have people who act as
gatekeepers; they apply changes from other people to a repository to which those others don't have access.

Mercurial makesit easy to send changes over email for review or application, viaitspat chbonb extension. The extension
is so hamed because changes are formatted as patches, and it's usual to send one changeset per email message. Sending a
long series of changes by email isthus much like “bombing” the recipient's inbox, hence “patchbomb”.

Asusual, the basic configuration of the pat chbomnb extension takes just one or two linesinyour /. hgrc.

[ext ensi ons]
pat chbonb =

Once you've enabled the extension, you will have anew command available, named email.

The safest and best way to invoke the email command isto alwaysrun it first with thehg - n option. Thiswill show you
what the command would send, without actually sending anything. Once you've had a quick glance over the changes and
verified that you are sending the right ones, you can rerun the same command, with the hg - n option removed.

The email command accepts the same kind of revision syntax as every other Mercurial command. For example, this
command will send every revision between 7 andt i p, inclusive.

hg email -n 7:tip |

Y ou can aso specify arepository to compare with. If you provide a repository but no revisions, the email command will
send all revisionsin the local repository that are not present in the remote repository. If you additionally specify revisions
or abranch name (the latter using thehg - b option), thiswill constrain the revisions sent.

It's perfectly safe to run the email command without the names of the people you want to send to: if you do this, it will
just prompt you for those values interactively. (If you're using a Linux or Unix-like system, you should have enhanced
r eadl i ne-style editing capabilities when entering those headers, too, which is useful.)

When you are sending just one revision, the email command will by default use the first line of the changeset description
as the subject of the single email message it sends.

If you send multiple revisions, the email command will usually send one message per changeset. It will preface the series
with an introductory message, in which you should describe the purpose of the series of changes you're sending.

14.4.1. Changing the behavior of patchbombs

Not every project has exactly the same conventions for sending changes in email; the pat chbonb extension tries to
accommodate a number of variations through command line options.

* You can write a subject for the introductory message on the command line using the hg - s option. This takes one
argument, the text of the subject to use.

» To change the email address from which the messages originate, usethe hg - f option. This takes one argument, the
email addressto use.

156

Adding functionality with extensions

The default behavior isto send unified diffs (see Section 12.4, “Understanding patches’ for adescription of the format),
one per message. Y ou can send a binary bundle instead with the hg - b option.

Unified diffs are normally prefaced with a metadata header. Y ou can omit this, and send unadorned diffs, with the hg
- - pl ai n option.

Diffsare normally sent “inline”, in the same body part as the description of a patch. This makesit easiest for the largest
number of readers to quote and respond to parts of a diff, as some mail clientswill only quote the first MIME body part
in amessage. If you'd prefer to send the description and the diff in separate body parts, usethehg - a option.

Instead of sending mail messages, you can write them to an mbox-format mail folder using the hg - moption. That
option takes one argument, the name of the file to write to.

If you would like to add a diffstat-format summary to each patch, and oneto the introductory message, usethehg -d
option. Thediffstat command displays atable containing the name of each file patched, the number of lines affected, and
a histogram showing how much each fileis modified. This gives readers a qualitative glance at how complex apatchiis.

157

Appendix A. Migrating to Mercurial

A

A common way to test the waters with a new revision control tool is to experiment with switching an existing project,
rather than starting a new project from scratch.

In this appendix, we discuss how to import a project's history into Mercurial, and what to look out for if you are used to
adifferent revision control system.

1. Importing history from another system

Mercurial shipswith an extension named conver t , which can import project history from most popular revision control
systems. At the time this book was written, it could import history from the following systems:

* Subversion

* CVS

e Qit

» Darcs

» Bazaar

* Monotone

* GNU Arch

* Mercurid

(To seewhy Mercurial itself is supported as a source, see Section A.1.3, “Tidying up the tree”.)

Y ou can enable the extension in the usual way, by editing your ~/ . hgr c file.

[ext ensi ons]
convert =

Thiswill make ahg convert command available. The command is easy to use. For instance, this command will import the
Subversion history for the Nose unit testing framework into Mercurial.

ﬁ hg convert http://python-nose. googl ecode. conif svn/trunk

Theconvert extension operatesincrementally. In other words, after you have run hg convert once, running it again will
import any new revisions committed after the first run began. Incremental conversion will only work if you run hg convert
in the same Mercuria repository that you originally used, because the convert extension saves some private metadata
in anon-revision-controlled file named . hg/ shamap inside the target repository.

When you want to start making changes using Mercurial, it's best to clone the treein which you are doing your conversions,
and leave the original tree for future incremental conversions. This is the safest way to let you pull and merge future
commits from the source revision control system into your newly active Mercuria project.

A.1.1. Converting multiple branches

The hg convert command given above converts only the history of the t r unk branch of the Subversion repository. If
we instead use the URL ht t p: // pyt hon- nose. googl ecode. cont svn, Mercuria will automatically detect the
t runk, t ags andbr anches layout that Subversion projects usually use, and it will import each as a separate Mercurial
branch.

By default, each Subversion branch imported into Mercurial is given a branch name. After the conversion completes, you
can get alist of the active branch names in the Mercurial repository using hg branches -a. If you would prefer to import

158

Migrating to Mercurial

the Subversion branches without names, pass the - - confi g convert. hg. usebranchnames=f al se option to
hg convert.

Once you have converted your tree, if you want to follow the usual Mercurial practice of working in atree that contains a
single branch, you can clone that single branch using hg clone -r mybranchname.

A.1.2. Mapping user names

Some revision control tools save only short usernames with commits, and these can be difficult to interpret. The norm with
Mercurial isto save acommitter's name and email address, which is much more useful for talking to them after the fact.

If you are converting a tree from a revision control system that uses short names, you can map those names to longer
equivalents by passing a - - aut hor s option to hg convert. This option accepts a file name that should contain entries
of the following form.

arist = Aristotle <aristotle@hil.exanple.gr>
soc = Socrates <socrates@hil.exanple.gr>

Whenever convert encounters a commit with the username ari st in the source repository, it will use the name
Aristotle <aristotle@hil.exanple.gr>inthe converted Mercurial revision. If no match is found for a
name, it is used verbatim.

A.1.3. Tidying up the tree

Not al projects have pristine history. There may be a directory that should never have been checked in, afile that is too
big, or awhole hierarchy that needs to be refactored.

The convert extension supports the idea of a“file map” that can reorganize the files and directories in a project as it
imports the project's history. This is useful not only when importing history from other revision control systems, but also
to prune or refactor aMercurial tree.

To specify afilemap, usethe- - f i | enap option and supply afile name. A file map containslines of the following forms.

This is a comment.
Enpty lines are ignored.

i nclude path/to/file

exclude path/to/file

renane from sone/ path to/sone/other/place

Thei ncl ude directive causes afile, or all files under a directory, to be included in the destination repository. This also
excludes all other files and dirs not explicitely included. The excl ude directive causes files or directories to be omitted,
and others not explicitly mentioned to be included.

To move afile or directory from one location to another, usether enane directive. If you need to move afile or directory
from a subdirectory into the root of the repository, use. asthe second argument to ther enane directive.

A.1l.4. Improving Subversion conversion performance

You will often need severa attempts before you hit the perfect combination of user map, file map, and other conversion
parameters. Converting a Subversion repository over an access protocol likessh or ht t p can proceed thousands of times
more slowly than Mercurial is capable of actually operating, due to network delays. This can make tuning that perfect
conversion recipe very painful.

The svnsync [http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt] command can greatly speed up the conversion of a
Subversion repository. It is aread-only mirroring program for Subversion repositories. The ideais that you create a local
mirror of your Subversion tree, then convert the mirror into a Mercurial repository.

Suppose we want to convert the Subversion repository for the popular Memcached project into a Mercurial tree. First, we
create alocal Subversion repository.

159

http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt
http://svn.collab.net/repos/svn/trunk/notes/svnsync.txt

Migrating to Mercurial

|6 svnadnin create nencached-mirror

Next, we set up a Subversion hook that svnsync needs.

$ echo '#!/bin/sh' > menctached-m rror/hooks/ pre-revprop-change
$ chrmod +x menctached- m rror/ hooks/ pre-revprop-change

We then initialize svnsync in this repository.

$ svnsync --init file:// pwd /nmencached-mrror \
http://code. si xapart. com svn/ nenctached

Our next step isto begin the svnsync mirroring process.

8 svnsync sync file:// pwd /nmencached-mirror

Finally, we import the history of our local Subversion mirror into Mercurial.

[$ hg convert nencached-mirror

We can use this process incrementally if the Subversion repository is still in use. We run svnsync to pull new changesinto
our mirror, then hg convert to import them into our Mercurial tree.

There are two advantages to doing a two-stage import with svnsync. The first is that it uses more efficient Subversion
network syncing code than hg convert, so it transfersless data over the network. The second isthat the import from alocal
Subversion tree is so fast that you can tweak your conversion setup repeatedly without having to sit through a painfully
slow network-based conversion process each time.

A.2. Migrating from Subversion

Subversioniscurrently the most popular open sourcerevision control system. Although there are many differences between
Mercurial and Subversion, making the transition from Subversion to Mercurial is not particularly difficult. The two have
similar command sets and generally uniform interfaces.

A.2.1. Philosophical differences

Thefundamental difference between Subversion and Mercuria isof coursethat Subversion is centralized, while Mercuria
isdistributed. Since Mercurial storesall of aproject's history on your local drive, it only needsto perform anetwork access
when you want to explicitly communicate with another repository. In contrast, Subversion stores very little information
locally, and the client must thus contact its server for many common operations.

Subversion more or less gets away without a well-defined notion of a branch: which portion of a server's namespace
qualifies as a branch is a matter of convention, with the software providing no enforcement. Mercurial treats a repository
as the unit of branch management.

A.2.1.1. Scope of commands

Since Subversion doesn't know what parts of its namespace are really branches, it treats most commands as requests to
operate at and below whatever directory you are currently visiting. For instance, if you run svn log, you'll get the history
of whatever part of the tree you're looking at, not the tree as awhole.

Mercurial's commands behave differently, by defaulting to operating over an entire repository. Run hg log and it will tell
you the history of the entire tree, no matter what part of the working directory you're visiting at the time. If you want the
history of just aparticular file or directory, ssimply supply it by name, e.g. hglog src.

From my own experience, this difference in default behaviors is probably the most likely to trip you up if you have to
switch back and forth frequently between the two tools.

A.2.1.2. Multi-user operation and safety

With Subversion, itisnormal (though slightly frowned upon) for multiple people to collaborate in asingle branch. If Alice
and Bob are working together, and Alice commits some changes to their shared branch, Bob must update his client's view

160

Migrating to Mercurial

of the branch before he can commit. Since at this time he has no permanent record of the changes he has made, he can
corrupt or lose his modifications during and after his update.

Mercurial encourages a commit-then-merge model instead. Bob commits his changes locally before pulling changes from,
or pushing them to, the server that he shares with Alice. If Alice pushed her changes before Bob tries to push his, he will
not be able to push his changes until he pulls hers, merges with them, and commits the result of the merge. If he makes a
mistake during the merge, he still has the option of reverting to the commit that recorded his changes.

It isworth emphasizing that these are the common ways of working with these tools. Subversion supports a safer work-in-

your-own-branch model, but it is cumbersome enough in practice to not be widely used. Mercurial can support the less safe
mode of alowing changes to be pulled in and merged on top of uncommitted edits, but thisis considered highly unusual.

A.2.1.3. Published vs local changes

A Subversion svn commit command immediately publishes changes to a server, where they can be seen by everyone who
has read access.

With Mercurial, commits are always local, and must be published via a hg push command afterwards.

Each approach has its advantages and disadvantages. The Subversion model means that changes are published, and hence
reviewable and usable, immediately. On the other hand, this means that a user must have commit access to arepository in
order to use the software in anormal way, and commit access is not lightly given out by most open source projects.

The Mercuria approach allows anyone who can clone arepository to commit changes without the need for someone else's
permission, and they can then publish their changesand continueto participate however they seefit. Thedistinction between

committing and pushing does open up the possibility of someone committing changesto their laptop and walking away for
afew days having forgotten to push them, which in rare cases might leave collaborators temporarily stuck.

A.2.2. Quick reference

Table A.1. Subversion commands and Mercurial equivalents

Subversion Mercurial Notes

svn add hg add

svn blame hg annotate

svn cat hg cat

svn checkout hg clone

svn cleanup n/a No cleanup needed

svn commit hg commit; hg push hg push publishes after commit
svn copy hg clone To create anew branch

svn copy hg copy To copy files or directories

svn delete (svn remove) hg remove

svn diff hg diff

svn export hg ar chive

svn help hg help

svn import hg addremove; hg commit

svninfo hg parents Shows what revision is checked out
svn info hg showconfig paths.parent Shows what URL is checked out
svn list hg manifest

svn log hg log

svn merge hg merge

161

Migrating to Mercurial

Subversion Mercurial Notes

svn mkdir n/a Mercurial does not track directories
svn move (svn rename) hg rename

svn resolved hg resolve -m

svn revert hgrevert

svn status hg status

svn update hg pull -u

A.3. Useful tips for newcomers

Under some revision control systems, printing a diff for a single committed revision can be painful. For instance, with
Subversion, to see what changed in revision 104654, you must type svn diff -r 104653:104654. Mercurial eliminates the
need to type the revision ID twice in this common case. For a plain diff, hg export 104654. For a log message followed
by adiff, hg log -r 104654 -p.

When you run hg status without any arguments, it prints the status of the entire tree, with paths relative to the root of the
repository. This makes it tricky to copy a file name from the output of hg status into the command line. If you supply a
file or directory name to hg status, it will print paths relative to your current location instead. So to get tree-wide status
from hg status, with paths that are relative to your current directory and not the root of the repository, feed the output of
hg root into hg status. Y ou can easily do this as follows on a Unix-like system:

6 hg status “hg root"

162

Appendix B. Mercurial Queues reference

B.1. MQ command reference

For an overview of the commands provided by MQ, use the command hg help mq.

B.1.1. gapplied—print applied patches

The gqapplied command prints the current stack of applied patches. Patches are printed in oldest-to-newest order, so the
last patch in thelist isthe “top” patch.

B.1.2. gcommit—commit changes in the queue repository

The gcommit command commits any outstanding changesinthe. hg/ pat ches repository. Thiscommand only worksiif
the. hg/ pat ches directory isarepository, i.e. you created the directory using hg ginit - ¢ or ran hginit in the directory
after running ginit.

This command is shorthand for hg commit --cwd .hg/patches.

B.1.3. gdelete—delete a patch from the seri es file

The qdelete command removes the entry for a patch fromthe ser i es fileinthe. hg/ pat ches directory. It does not
pop the patch if the patch is already applied. By default, it does not delete the patch file; use the - f option to do that.

Options:

» -f: Deletethe patch file.

B.1.4. qdiff—print a diff of the topmost applied patch

The qdiff command prints a diff of the topmost applied patch. It is equivalent to hg diff -r-2:-1.

B.1.5. gfold—move applied patches into repository history

The hg gfinish command converts the specified applied patches into permanent changes by moving them out of MQ's
control so that they will be treated as normal repository history.

B.1.6. gfold—merge (“fold”) several patches into one

The gfold command merges multiple patches into the topmost applied patch, so that the topmost applied patch makes the
union of al of the changesin the patches in question.

The patches to fold must not be applied; gfold will exit with an error if any is. The order in which patches are folded is
significant; hg gfold a b means “ apply the current topmost patch, followed by a, followed by b”.

The commentsfrom thefolded patches are appended to the comments of the destination patch, with each block of comments
separated by threeasterisk (“* ") characters. Usethe- e option to edit the commit message for the combined patch/changeset
after the folding has compl eted.

Options:
- e: Edit the commit message and patch description for the newly folded patch.
» - | : Usethe contents of the given file as the new commit message and patch description for the folded patch.

» - m Usethe given text as the new commit message and patch description for the folded patch.

163

Mercurial Queues reference

B.1.7. gheader—display the header/description of a patch

The gheader command prints the header, or description, of a patch. By default, it prints the header of the topmost applied
patch. Given an argument, it prints the header of the named patch.

B.1.8. qimport—import a third-party patch into the queue

Thegimport command addsan entry for an external patchtotheser i es file, and copiesthepatchintothe. hg/ pat ches
directory. It adds the entry immediately after the topmost applied patch, but does not push the patch.

If the. hg/ pat ches directory isarepository, gimport automatically does an hg add of the imported patch.

B.1.9. ginit—prepare a repository to work with MQ

The ginit command prepares a repository to work with MQ. It creates adirectory called . hg/ pat ches.
Options:

» -c:Create. hg/ pat ches asarepository initsownright. Also createsa. hgi gnor e filethat will ignorethest at us
file

Whenthe. hg/ pat ches directory isarepository, the gimport and gnew commands automatically hg add new patches.

B.1.10. gnew—create a new patch

The gnew command creates a new patch. It takes one mandatory argument, the name to use for the patch file. The newly
created patch is created empty by default. It is added to the ser i es file after the current topmost applied patch, and is
immediately pushed on top of that patch.

If gnew finds modified filesin the working directory, it will refuse to create a new patch unlessthe - f option isused (see
below). This behavior allows you to grefresh your topmost applied patch before you apply a new patch on top of it.

Options:

» -f: Create anew patch if the contents of the working directory are modified. Any outstanding modifications are added
to the newly created patch, so after this command completes, the working directory will no longer be modified.

» -m Use the given text as the commit message. This text will be stored at the beginning of the patch file, before the
patch data.

B.1.11. gnext—print the name of the next patch

The gnext command prints the name name of the next patchintheser i es file after the topmost applied patch. This patch
will become the topmost applied patch if you run gpush.

B.1.12. gpop—pop patches off the stack

The gpop command removes applied patches from the top of the stack of applied patches. By default, it removes only
one patch.

This command removes the changesets that represent the popped patches from the repository, and updates the working
directory to undo the effects of the patches.

This command takes an optional argument, which it uses as the name or index of the patch to pop to. If given a name, it
will pop patches until the named patch is the topmost applied patch. If given anumber, gpop treats the number as an index
into the entriesin the seriesfile, counting from zero (empty lines and lines containing only comments do not count). It pops
patches until the patch identified by the given index is the topmost applied patch.

164

Mercurial Queues reference

Thegpop command does not read or write patchesor theser i es file. Itisthussafeto qpop apatch that you have removed
fromthe seri es file, or a patch that you have renamed or deleted entirely. In the latter two cases, use the name of the
patch as it was when you applied it.

By default, the qpop command will not pop any patchesif the working directory has been modified. Y ou can override this
behavior using the - f option, which reverts all modifications in the working directory.

Options:

e - a: Pop all applied patches. This returns the repository to its state before you applied any patches.
» - f: Forcibly revert any modifications to the working directory when popping.

* - n: Pop apatch from the named queue.

The gpop command removes one line from the end of the st at us file for each patch that it pops.

B.1.13. gprev—print the name of the previous patch

The gprev command prints the name of the patch inthe ser i es file that comes before the topmost applied patch. This
will become the topmost applied patch if you run gqpop.

B.1.14. gpush—push patches onto the stack

The gpush command adds patches onto the applied stack. By default, it adds only one patch.

This command creates a new changeset to represent each applied patch, and updates the working directory to apply the
effects of the patches.

The default data used when creating a changeset are as follows:

» The commit date and time zone are the current date and time zone. Because these data are used to compute the identity
of achangeset, thismeansthat if you gpop a patch and gpush it again, the changeset that you push will have adifferent
identity than the changeset you popped.

» The author isthe same as the default used by the hg commit command.

» The commit message is any text from the patch file that comes before the first diff header. If there is no such text, a
default commit message is used that identifies the name of the patch.

If apatch contains a Mercurial patch header, the information in the patch header overrides these defaults.
Options:

e - a: Push all unapplied patchesfrom the ser i es file until there are none l€eft to push.

e -1 : Add the name of the patch to the end of the commit message.

» -m If apatch fails to apply cleanly, use the entry for the patch in another saved queue to compute the parameters for
a three-way merge, and perform a three-way merge using the normal Mercurial merge machinery. Use the resolution
of the merge as the new patch content.

* - n: Usethe named queue if merging while pushing.

The gqpush command reads, but does not modify, theser i es file. It appends one line to the hg status file for each patch
that it pushes.

B.1.15. grefresh—update the topmost applied patch

Theqgr efr esh command updatesthetopmost applied patch. It modifiesthe patch, removesthe old changeset that represented
the patch, and creates a new changeset to represent the modified patch.

165

Mercurial Queues reference

The grefresh command looks for the following modifications:

» Changestothe commit message, i.e. thetext beforethefirst diff header inthe patch file, arereflected in the new changeset
that represents the patch.

» Moadifications to tracked files in the working directory are added to the patch.

+ Changes to the files tracked using hg add, hg copy, hg remove, or hg rename. Added files and copy and rename
destinations are added to the patch, while removed files and rename sources are removed.

Even if grefresh detects no changes, it till recreates the changeset that represents the patch. This causes the identity of
the changeset to differ from the previous changeset that identified the patch.

Options:
* - e: Modify the commit and patch description, using the preferred text editor.
* - m Modify the commit message and patch description, using the given text.

e - | : Modify the commit message and patch description, using text from the given file.

B.1.16. grename—rename a patch

The grename command renames a patch, and changes the entry for the patch inthe ser i es file.

With a single argument, gr ename renames the topmost applied patch. With two arguments, it renames its first argument
to its second.

B.1.17. gseries—print the entire patch series

The gseries command prints the entire patch series from the ser i es file. It prints only patch names, not empty lines or
comments. It printsin order from first to be applied to last.

B.1.18. qtop—yprint the name of the current patch

The qgtop prints the name of the topmost currently applied patch.

B.1.19. qunapplied—print patches not yet applied

The qunapplied command prints the names of patches from the ser i es file that are not yet applied. It prints them in
order from the next patch that will be pushed to the last.

B.1.20. hg strip—remove a revision and descendants

The hg strip command removes a revision, and all of its descendants, from the repository. It undoes the effects of the
removed revisions from the repository, and updates the working directory to the first parent of the removed revision.

The hg strip command saves a backup of the removed changesets in a bundle, so that they can be reapplied if removed
inerror.

Options:
» - b: Save unrelated changesets that are intermixed with the stripped changesets in the backup bundle.
» - f: If abranch has multiple heads, remove al heads.

* - n: Do not save a backup bundle.

166

Mercurial Queues reference

B.2. MQ file reference
B.2.1. The seri es file

Theseri es file contains alist of the names of all patches that MQ can apply. It is represented as a list of names, with
one name saved per line. Leading and trailing white space in each line are ignored.

Lines may contain comments. A comment begins with the “#” character, and extends to the end of the line. Empty lines,
and lines that contain only comments, are ignored.

You will often need to edit the ser i es file by hand, hence the support for comments and empty lines noted above. For
example, you can comment out a patch temporarily, and gpush will skip over that patch when applying patches. Y ou can
also change the order in which patches are applied by reordering their entriesintheser i es file.

Placing the ser i es file under revision control is also supported; it is agood idea to place al of the patches that it refers
to under revision control, as well. If you create a patch directory using the - ¢ option to ginit, this will be done for you
automatically.

B.2.2. The st at us file

Thest at us filecontainsthe names and changeset hashes of all patchesthat MQ currently hasapplied. Unliketheser i es
file, thisfile is not intended for editing. Y ou should not place this file under revision control, or modify it in any way. It
isused by MQ strictly for internal book-keeping.

167

Appendix C. Installing Mercurial from
source

C.1. On a Unix-like system

If you are using a Unix-like system that has a sufficiently recent version of Python (2.3 or newer) available, it is easy to
install Mercurial from source.

1. Download arecent source tarball from http://www.selenic.com/mercurial/downl oad.

2. Unpack the tarball:

lpzip -dc nercurial - MYVERSION.tar.gz | tar xf - |

3. Gointo the source directory and run the installer script. Thiswill build Mercurial and install it in your home directory.

cd mercuri al - MYVERSI ON
pyt hon setup.py install --force --honme=$HOVE

Once theinstall finishes, Mercurial will beinthe bi n subdirectory of your home directory. Don't forget to make sure that
this directory is present in your shell's search path.

Y ou will probably need to set the PYTHONPATH environment variable so that the Mercurial executable can find the rest of
the Mercurial packages. For example, on my laptop, | have setitto/ hone/ bos/ | i b/ pyt hon. The exact path that you
will need to use depends on how Python was built for your system, but should be easy to figure out. If you're uncertain, look
through the output of the installer script above, and see where the contents of themer cur i al directory wereinstalled to.

C.2. On Windows

Building and installing Mercurial on Windows requires a variety of tools, a fair amount of technical knowledge, and
considerable patience. | very much do not recommend thisroute if you are a“casual user”. Unless you intend to hack on
Mercurial, | strongly suggest that you use a binary package instead.

If you areintent on building Mercurial from source on Windows, follow the “hard way” directions on the Mercurial wiki at
http://mwww.sel enic.com/mercurial/wiki/index.cgi/Windowsl nstall, and expect the process to involve alot of fiddly work.

168

http://www.selenic.com/mercurial/download
http://www.selenic.com/mercurial/wiki/index.cgi/WindowsInstall

Appendix D. Open Publication License

Version 1.0, 8 June 1999

D.1. Requirements on both unmodified and
modified versions

The Open Publication works may be reproduced and distributed in whole or in part, in any medium physical or electronic,
provided that the terms of this license are adhered to, and that this license or an incorporation of it by reference (with any
options elected by the author(s) and/or publisher) is displayed in the reproduction.

Proper form for an incorporation by reference is as follows:

Copyright (c) year by author's name or designee. This material may be distributed only subject to the
termsand conditions set forth in the Open Publication License, vx.y or later (thelatest versionispresently
available at http://www.opencontent.org/openpuby).

The reference must be immediately followed with any options elected by the author(s) and/or publisher of the document
(see Section D.6, “License options”).

Commercial redistribution of Open Publication-licensed material is permitted.

Any publication in standard (paper) book form shall require the citation of the original publisher and author. The publisher
and author's names shall appear on all outer surfaces of the book. On all outer surfaces of the book the original publisher's
name shall be as large as the title of the work and cited as possessive with respect to the title.

D.2. Copyright

The copyright to each Open Publication is owned by its author(s) or designee.

D.3. Scope of license

The following license terms apply to all Open Publication works, unless otherwise explicitly stated in the document.

Mere aggregation of Open Publication works or aportion of an Open Publication work with other works or programs on the
same media shall not cause thislicense to apply to those other works. The aggregate work shall contain a notice specifying
the inclusion of the Open Publication material and appropriate copyright notice.

Sever ability. If any part of this license is found to be unenforceable in any jurisdiction, the remaining portions of the
license remain in force.

No warranty. Open Publication works are licensed and provided “asis’ without warranty of any kind, express or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose or a warranty
of non-infringement.

D.4. Requirements on modified works

All modified versions of documents covered by this license, including trandations, anthologies, compilations and partial
documents, must meet the following requirements:

1. The modified version must be labeled as such.
2. The person making the modifications must be identified and the modifications dated.

3. Acknowledgement of the original author and publisher if applicable must be retained according to normal academic
Citation practices.

169

http://www.opencontent.org/openpub/

Open Publication License

4.

5.

The location of the original unmodified document must be identified.

The original author's (or authors) name(s) may not be used to assert or imply endorsement of the resulting document
without the original author's (or authors’) permission.

D.5. Good-practice recommendations

In addition to the requirements of thislicense, it is requested from and strongly recommended of redistributors that:

1.

If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification to the authors
of your intent to redistribute at least thirty days before your manuscript or media freeze, to give the authors time to
provide updated documents. This notification should describe modifications, if any, made to the document.

. All substantive modifications (including deletions) be either clearly marked up in the document or else described in an

attachment to the document.

. Finally, whileit is not mandatory under thislicense, it is considered good form to offer afree copy of any hardcopy and

CD-ROM expression of an Open Publication-licensed work to its author(s).

D.6. License options

The author(s) and/or publisher of an Open Publication-licensed document may elect certain options by appending language
to the reference to or copy of the license. These options are considered part of the license instance and must be included
with the license (or its incorporation by reference) in derived works.

1.

To prohibit distribution of substantively modified versions without the explicit permission of the author(s). “ Substantive
modification” is defined as a change to the semantic content of the document, and excludes mere changes in format
or typographical corrections.

. To accomplish this, add the phrase “Distribution of substantively modified versions of this document is prohibited

without the explicit permission of the copyright holder.” to the license reference or copy.

. To prohibit any publication of this work or derivative works in whole or in part in standard (paper) book form for

commercia purposesis prohibited unless prior permission is obtained from the copyright holder.

. To accomplish this, add the phrase “Distribution of the work or derivative of the work in any standard (paper) book

form is prohibited unless prior permission is obtained from the copyright holder.” to the license reference or copy.

170

	Mercurial: The Definitive Guide
	Table of Contents
	Preface
	1. Technical storytelling
	2. Thank you for supporting Mercurial
	3. Acknowledgments
	4. Conventions Used in This Book
	5. Using Code Examples
	6. Safari® Books Online
	7. How to Contact Us

	Chapter 1. How did we get here?
	1.1. Why revision control? Why Mercurial?
	1.1.1. Why use revision control?
	1.1.2. The many names of revision control

	1.2. About the examples in this book
	1.3. Trends in the field
	1.4. A few of the advantages of distributed revision control
	1.4.1. Advantages for open source projects
	1.4.1.1. The forking non-problem

	1.4.2. Advantages for commercial projects

	1.5. Why choose Mercurial?
	1.6. Mercurial compared with other tools
	1.6.1. Subversion
	1.6.2. Git
	1.6.3. CVS
	1.6.4. Commercial tools
	1.6.5. Choosing a revision control tool

	1.7. Switching from another tool to Mercurial
	1.8. A short history of revision control

	Chapter 2. A tour of Mercurial: the basics
	2.1. Installing Mercurial on your system
	2.1.1. Windows
	2.1.2. Mac OS X
	2.1.3. Linux
	2.1.4. Solaris

	2.2. Getting started
	2.2.1. Built-in help

	2.3. Working with a repository
	2.3.1. Making a local copy of a repository
	2.3.2. What's in a repository?

	2.4. A tour through history
	2.4.1. Changesets, revisions, and talking to other people
	2.4.2. Viewing specific revisions
	2.4.3. More detailed information

	2.5. All about command options
	2.6. Making and reviewing changes
	2.7. Recording changes in a new changeset
	2.7.1. Setting up a username
	2.7.1.1. Creating a Mercurial configuration file
	2.7.1.2. Choosing a user name

	2.7.2. Writing a commit message
	2.7.3. Writing a good commit message
	2.7.4. Aborting a commit
	2.7.5. Admiring our new handiwork

	2.8. Sharing changes
	2.8.1. Pulling changes from another repository
	2.8.2. Updating the working directory
	2.8.3. Pushing changes to another repository
	2.8.4. Default locations
	2.8.5. Sharing changes over a network

	2.9. Starting a new project

	Chapter 3. A tour of Mercurial: merging work
	3.1. Merging streams of work
	3.1.1. Head changesets
	3.1.2. Performing the merge
	3.1.3. Committing the results of the merge

	3.2. Merging conflicting changes
	3.2.1. Using a graphical merge tool
	3.2.2. A worked example

	3.3. Simplifying the pull-merge-commit sequence
	3.4. Renaming, copying, and merging

	Chapter 4. Behind the scenes
	4.1. Mercurial's historical record
	4.1.1. Tracking the history of a single file
	4.1.2. Managing tracked files
	4.1.3. Recording changeset information
	4.1.4. Relationships between revisions

	4.2. Safe, efficient storage
	4.2.1. Efficient storage
	4.2.2. Safe operation
	4.2.3. Fast retrieval
	4.2.3.1. Aside: the influence of video compression

	4.2.4. Identification and strong integrity

	4.3. Revision history, branching, and merging
	4.4. The working directory
	4.4.1. What happens when you commit
	4.4.2. Creating a new head
	4.4.3. Merging changes
	4.4.4. Merging and renames

	4.5. Other interesting design features
	4.5.1. Clever compression
	4.5.1.1. Network recompression

	4.5.2. Read/write ordering and atomicity
	4.5.3. Concurrent access
	4.5.3.1. Safe dirstate access

	4.5.4. Avoiding seeks
	4.5.5. Other contents of the dirstate

	Chapter 5. Mercurial in daily use
	5.1. Telling Mercurial which files to track
	5.1.1. Explicit versus implicit file naming
	5.1.2. Mercurial tracks files, not directories

	5.2. How to stop tracking a file
	5.2.1. Removing a file does not affect its history
	5.2.2. Missing files
	5.2.3. Aside: why tell Mercurial explicitly to remove a file?
	5.2.4. Useful shorthand—adding and removing files in one step

	5.3. Copying files
	5.3.1. The results of copying during a merge
	5.3.2. Why should changes follow copies?
	5.3.3. How to make changes not follow a copy
	5.3.4. Behavior of the hg copy command

	5.4. Renaming files
	5.4.1. Renaming files and merging changes
	5.4.2. Divergent renames and merging
	5.4.3. Convergent renames and merging
	5.4.4. Other name-related corner cases

	5.5. Recovering from mistakes
	5.6. Dealing with tricky merges
	5.6.1. File resolution states
	5.6.2. Resolving a file merge

	5.7. More useful diffs
	5.8. Which files to manage, and which to avoid
	5.9. Backups and mirroring

	Chapter 6. Collaborating with other people
	6.1. Mercurial's web interface
	6.2. Collaboration models
	6.2.1. Factors to keep in mind
	6.2.2. Informal anarchy
	6.2.3. A single central repository
	6.2.4. A hosted central repository
	6.2.5. Working with multiple branches
	6.2.6. Feature branches
	6.2.7. The release train
	6.2.8. The Linux kernel model
	6.2.9. Pull-only versus shared-push collaboration
	6.2.10. Where collaboration meets branch management

	6.3. The technical side of sharing
	6.4. Informal sharing with hg serve
	6.4.1. A few things to keep in mind

	6.5. Using the Secure Shell (ssh) protocol
	6.5.1. How to read and write ssh URLs
	6.5.2. Finding an ssh client for your system
	6.5.3. Generating a key pair
	6.5.4. Using an authentication agent
	6.5.5. Configuring the server side properly
	6.5.6. Using compression with ssh

	6.6. Serving over HTTP using CGI
	6.6.1. Web server configuration checklist
	6.6.2. Basic CGI configuration
	6.6.2.1. What could possibly go wrong?
	6.6.2.2. Configuring lighttpd

	6.6.3. Sharing multiple repositories with one CGI script
	6.6.3.1. Explicitly specifying which repositories to publish

	6.6.4. Downloading source archives
	6.6.5. Web configuration options
	6.6.5.1. Options specific to an individual repository
	6.6.5.2. Options specific to the hg serve command
	6.6.5.3. Choosing the right ~/.hgrc file to add web items to

	6.7. System-wide configuration
	6.7.1. Making Mercurial more trusting

	Chapter 7. File names and pattern matching
	7.1. Simple file naming
	7.2. Running commands without any file names
	7.3. Telling you what's going on
	7.4. Using patterns to identify files
	7.4.1. Shell-style glob patterns
	7.4.1.1. Watch out!

	7.4.2. Regular expression matching with re patterns

	7.5. Filtering files
	7.6. Permanently ignoring unwanted files and directories
	7.7. Case sensitivity
	7.7.1. Safe, portable repository storage
	7.7.2. Detecting case conflicts
	7.7.3. Fixing a case conflict

	Chapter 8. Managing releases and branchy development
	8.1. Giving a persistent name to a revision
	8.1.1. Handling tag conflicts during a merge
	8.1.2. Tags and cloning
	8.1.3. When permanent tags are too much

	8.2. The flow of changes—big picture vs. little
	8.3. Managing big-picture branches in repositories
	8.4. Don't repeat yourself: merging across branches
	8.5. Naming branches within one repository
	8.6. Dealing with multiple named branches in a repository
	8.7. Branch names and merging
	8.8. Branch naming is generally useful

	Chapter 9. Finding and fixing mistakes
	9.1. Erasing local history
	9.1.1. The accidental commit
	9.1.2. Rolling back a transaction
	9.1.3. The erroneous pull
	9.1.4. Rolling back is useless once you've pushed
	9.1.5. You can only roll back once

	9.2. Reverting the mistaken change
	9.2.1. File management errors

	9.3. Dealing with committed changes
	9.3.1. Backing out a changeset
	9.3.2. Backing out the tip changeset
	9.3.3. Backing out a non-tip change
	9.3.3.1. Always use the --merge option

	9.3.4. Gaining more control of the backout process
	9.3.5. Why hg backout works as it does

	9.4. Changes that should never have been
	9.4.1. Backing out a merge
	9.4.2. Protect yourself from “escaped” changes
	9.4.3. What to do about sensitive changes that escape

	9.5. Finding the source of a bug
	9.5.1. Using the hg bisect command
	9.5.2. Cleaning up after your search

	9.6. Tips for finding bugs effectively
	9.6.1. Give consistent input
	9.6.2. Automate as much as possible
	9.6.3. Check your results
	9.6.4. Beware interference between bugs
	9.6.5. Bracket your search lazily

	Chapter 10. Handling repository events with hooks
	10.1. An overview of hooks in Mercurial
	10.2. Hooks and security
	10.2.1. Hooks are run with your privileges
	10.2.2. Hooks do not propagate
	10.2.3. Hooks can be overridden
	10.2.4. Ensuring that critical hooks are run

	10.3. A short tutorial on using hooks
	10.3.1. Performing multiple actions per event
	10.3.2. Controlling whether an activity can proceed

	10.4. Writing your own hooks
	10.4.1. Choosing how your hook should run
	10.4.2. Hook parameters
	10.4.3. Hook return values and activity control
	10.4.4. Writing an external hook
	10.4.5. Telling Mercurial to use an in-process hook
	10.4.6. Writing an in-process hook

	10.5. Some hook examples
	10.5.1. Writing meaningful commit messages
	10.5.2. Checking for trailing whitespace

	10.6. Bundled hooks
	10.6.1. acl—access control for parts of a repository
	10.6.1.1. Configuring the acl hook
	10.6.1.2. Testing and troubleshooting

	10.6.2. bugzilla—integration with Bugzilla
	10.6.2.1. Configuring the bugzilla hook
	10.6.2.2. Mapping committer names to Bugzilla user names
	10.6.2.3. Configuring the text that gets added to a bug
	10.6.2.4. Testing and troubleshooting

	10.6.3. notify—send email notifications
	10.6.3.1. Configuring the notify hook
	10.6.3.2. Testing and troubleshooting

	10.7. Information for writers of hooks
	10.7.1. In-process hook execution
	10.7.2. External hook execution
	10.7.3. Finding out where changesets come from
	10.7.3.1. Sources of changesets
	10.7.3.2. Where changes are going—remote repository URLs

	10.8. Hook reference
	10.8.1. changegroup—after remote changesets added
	10.8.2. commit—after a new changeset is created
	10.8.3. incoming—after one remote changeset is added
	10.8.4. outgoing—after changesets are propagated
	10.8.5. prechangegroup—before starting to add remote changesets
	10.8.6. precommit—before starting to commit a changeset
	10.8.7. preoutgoing—before starting to propagate changesets
	10.8.8. pretag—before tagging a changeset
	10.8.9. pretxnchangegroup—before completing addition of remote changesets
	10.8.10. pretxncommit—before completing commit of new changeset
	10.8.11. preupdate—before updating or merging working directory
	10.8.12. tag—after tagging a changeset
	10.8.13. update—after updating or merging working directory

	Chapter 11. Customizing the output of Mercurial
	11.1. Using precanned output styles
	11.1.1. Setting a default style

	11.2. Commands that support styles and templates
	11.3. The basics of templating
	11.4. Common template keywords
	11.5. Escape sequences
	11.6. Filtering keywords to change their results
	11.6.1. Combining filters

	11.7. From templates to styles
	11.7.1. The simplest of style files
	11.7.2. Style file syntax

	11.8. Style files by example
	11.8.1. Identifying mistakes in style files
	11.8.2. Uniquely identifying a repository
	11.8.3. Listing files on multiple lines
	11.8.4. Mimicking Subversion's output

	Chapter 12. Managing change with Mercurial Queues
	12.1. The patch management problem
	12.2. The prehistory of Mercurial Queues
	12.2.1. A patchwork quilt
	12.2.2. From patchwork quilt to Mercurial Queues

	12.3. The huge advantage of MQ
	12.4. Understanding patches
	12.5. Getting started with Mercurial Queues
	12.5.1. Creating a new patch
	12.5.2. Refreshing a patch
	12.5.3. Stacking and tracking patches
	12.5.4. Manipulating the patch stack
	12.5.5. Pushing and popping many patches
	12.5.6. Safety checks, and overriding them
	12.5.7. Working on several patches at once

	12.6. More about patches
	12.6.1. The strip count
	12.6.2. Strategies for applying a patch
	12.6.3. Some quirks of patch representation
	12.6.4. Beware the fuzz
	12.6.5. Handling rejection

	12.7. More on patch management
	12.7.1. Deleting unwanted patches
	12.7.2. Converting to and from permanent revisions

	12.8. Getting the best performance out of MQ
	12.9. Updating your patches when the underlying code changes
	12.10. Identifying patches
	12.11. Useful things to know about
	12.12. Managing patches in a repository
	12.12.1. MQ support for patch repositories
	12.12.2. A few things to watch out for

	12.13. Third party tools for working with patches
	12.14. Good ways to work with patches
	12.15. MQ cookbook
	12.15.1. Manage “trivial” patches
	12.15.2. Combining entire patches
	12.15.3. Merging part of one patch into another

	12.16. Differences between quilt and MQ

	Chapter 13. Advanced uses of Mercurial Queues
	13.1. The problem of many targets
	13.1.1. Tempting approaches that don't work well

	13.2. Conditionally applying patches with guards
	13.3. Controlling the guards on a patch
	13.4. Selecting the guards to use
	13.5. MQ's rules for applying patches
	13.6. Trimming the work environment
	13.7. Dividing up the series file
	13.8. Maintaining the patch series
	13.8.1. The art of writing backport patches

	13.9. Useful tips for developing with MQ
	13.9.1. Organising patches in directories
	13.9.2. Viewing the history of a patch

	Chapter 14. Adding functionality with extensions
	14.1. Improve performance with the inotify extension
	14.2. Flexible diff support with the extdiff extension
	14.2.1. Defining command aliases

	14.3. Cherrypicking changes with the transplant extension
	14.4. Send changes via email with the patchbomb extension
	14.4.1. Changing the behavior of patchbombs

	Appendix A. Migrating to Mercurial
	A.1. Importing history from another system
	A.1.1. Converting multiple branches
	A.1.2. Mapping user names
	A.1.3. Tidying up the tree
	A.1.4. Improving Subversion conversion performance

	A.2. Migrating from Subversion
	A.2.1. Philosophical differences
	A.2.1.1. Scope of commands
	A.2.1.2. Multi-user operation and safety
	A.2.1.3. Published vs local changes

	A.2.2. Quick reference

	A.3. Useful tips for newcomers

	Appendix B. Mercurial Queues reference
	B.1. MQ command reference
	B.1.1. qapplied—print applied patches
	B.1.2. qcommit—commit changes in the queue repository
	B.1.3. qdelete—delete a patch from the series file
	B.1.4. qdiff—print a diff of the topmost applied patch
	B.1.5. qfold—move applied patches into repository history
	B.1.6. qfold—merge (“fold”) several patches into one
	B.1.7. qheader—display the header/description of a patch
	B.1.8. qimport—import a third-party patch into the queue
	B.1.9. qinit—prepare a repository to work with MQ
	B.1.10. qnew—create a new patch
	B.1.11. qnext—print the name of the next patch
	B.1.12. qpop—pop patches off the stack
	B.1.13. qprev—print the name of the previous patch
	B.1.14. qpush—push patches onto the stack
	B.1.15. qrefresh—update the topmost applied patch
	B.1.16. qrename—rename a patch
	B.1.17. qseries—print the entire patch series
	B.1.18. qtop—print the name of the current patch
	B.1.19. qunapplied—print patches not yet applied
	B.1.20. hg strip—remove a revision and descendants

	B.2. MQ file reference
	B.2.1. The series file
	B.2.2. The status file

	Appendix C. Installing Mercurial from source
	C.1. On a Unix-like system
	C.2. On Windows

	Appendix D. Open Publication License
	D.1. Requirements on both unmodified and modified versions
	D.2. Copyright
	D.3. Scope of license
	D.4. Requirements on modified works
	D.5. Good-practice recommendations
	D.6. License options

