package Imager::Expr; use Imager::Regops; use strict; use vars qw($VERSION); $VERSION = "1.007"; my %expr_types; my $error; sub error { shift if UNIVERSAL::isa($_[0], 'Imager::Expr'); if (@_) { $error = "@_"; } else { return $error; } } # what else? my %default_constants = ( # too many digits, better than too few pi=>3.14159265358979323846264338327950288419716939937510582097494 ); sub new { my ($class, $opts) = @_; # possibly this is a very bad idea my ($type) = grep exists $expr_types{$_}, keys %$opts; die "Imager::Expr: No known expression type" if !defined $type; my $self = bless {}, $expr_types{$type}; $self->{variables} = [ @{$opts->{variables}} ]; $self->{constants} = { %default_constants, %{$opts->{constants} || {}} }; $self->{ops} = $self->compile($opts->{$type}, $opts) or return; $self->optimize() or return; $self->{code} = $self->assemble() or return; $self; } sub register_type { my ($pack, $name) = @_; $expr_types{$name} = $pack; } sub type_registered { my ($class, $name) = @_; $expr_types{$name}; } sub _variables { return @{$_[0]->{variables}}; } sub code { return $_[0]->{code}; } sub nregs { return $_[0]->{nregs}; } sub cregs { return $_[0]->{cregs}; } my $numre = '[+-]?(?:\d+\.?\d*|\.\d+)(?:[eE][+-]?\d+)?'; sub numre { $numre; } # optimize the code sub optimize { my ($self) = @_; my @ops = @{$self->{ops}}; # this function cannot current handle code with jumps return 1 if grep $_->[0] =~ /^jump/, @ops; # optimization - common sub-expression elimination # it's possible to fold this into the code generation - but it will wait my $max_opr = $Imager::Regops::MaxOperands; my $attr = \%Imager::Regops::Attr; my $foundops = 1; while ($foundops) { $foundops = 0; my %seen; my $index; my @out; while (@ops) { my $op = shift @ops; my $desc = join(",", @{$op}[0..$max_opr]); if ($seen{$desc}) { push(@out, @ops); my $old = $op->[-1]; my $new = $seen{$desc}; for $op (@out) { for my $reg (@{$op}[1..$max_opr]) { $reg = $new if $reg eq $old; } } $foundops=1; last; } $seen{$desc} = $op->[-1]; push(@out, $op); } @ops = @out; } # strength reduction for my $op (@ops) { # reduce division by a constant to multiplication by a constant if ($op->[0] eq 'div' && $op->[2] =~ /^r(\d+)/ && defined($self->{"nregs"}[$1])) { my $newreg = @{$self->{"nregs"}}; push(@{$self->{"nregs"}}, 1.0/$self->{"nregs"}[$1]); $op->[0] = 'mult'; $op->[2] = 'r'.$newreg; } } $self->{ops} = \@ops; 1; } sub assemble { my ($self) = @_; my $attr = \%Imager::Regops::Attr; my $max_opr = $Imager::Regops::MaxOperands; my @ops = @{$self->{ops}}; for my $op (@ops) { $op->[0] = $attr->{$op->[0]}{opcode}; for (@{$op}[1..$max_opr+1]) { s/^[rpj]// } } my $pack = $Imager::Regops::PackCode x (2+$Imager::Regops::MaxOperands); return join("", ,map { pack($pack, @$_, ) } @ops); } # converts stack code to register code sub stack_to_reg { my ($self, @st_ops) = @_; my @regstack; my %nregs; my @vars = $self->_variables(); my @nregs = (0) x scalar(@vars); my @cregs; my $attr = \%Imager::Regops::Attr; my %vars; my %names; my $max_opr = $Imager::Regops::MaxOperands; @vars{@vars} = map { "r$_" } 0..$#vars; my @ops; for (@st_ops) { if (/^$numre$/) { # combining constants makes the optimization below work if (exists $nregs{$_}) { push(@regstack, $nregs{$_}); } else { $nregs{$_} = "r".@nregs; push(@regstack,"r".@nregs); push(@nregs, $_); } } elsif (exists $vars{$_}) { push(@regstack, $vars{$_}); } elsif (exists $attr->{$_} && length $attr->{$_}{types}) { if (@regstack < $attr->{$_}{parms}) { error("Imager::transform2: stack underflow on $_"); return; } my @parms = splice(@regstack, -$attr->{$_}{parms}); my $types = join("", map {substr($_,0,1)} @parms); if ($types ne $attr->{$_}{types}) { if (exists $attr->{$_.'p'} && $types eq $attr->{$_.'p'}{types}) { $_ .= 'p'; } else { error("Imager::transform2: Call to $_ with incorrect types"); return; } } my $result; if ($attr->{$_}{result} eq 'r') { $result = "r".@nregs; push(@nregs, undef); } else { $result = "p".@cregs; push(@cregs, -1); } push(@regstack, $result); push(@parms, "0") while @parms < $max_opr; push(@ops, [ $_, @parms, $result ]); #print "$result <- $_ @parms\n"; } elsif (/^!(\w+)$/) { if (!@regstack) { error("Imager::transform2: stack underflow with $_"); return; } $names{$1} = pop(@regstack); } elsif (/^\@(\w+)$/) { if (exists $names{$1}) { push(@regstack, $names{$1}); } else { error("Imager::Expr: unknown storage \@$1"); return; } } else { error("Imager::Expr: unknown operator $_"); return; } } if (@regstack != 1) { error("stack must have only one item at end"); return; } if ($regstack[0] !~ /^p/) { error("you must have a color value at the top of the stack at end"); return; } push(@ops, [ "ret", $regstack[0], (-1) x $max_opr ]); $self->{"nregs"} = \@nregs; $self->{"cregs"} = \@cregs; return \@ops; } sub dumpops { my $result = ''; for my $op (@{$_[0]->{ops}}) { $result .= "@{$op}\n"; } $result; } # unassembles the compiled code sub dumpcode { my ($self) = @_; my $code = $self->{"code"}; my $attr = \%Imager::Regops::Attr; my @code = unpack("${Imager::Regops::PackCode}*", $code); my %names = map { $attr->{$_}{opcode}, $_ } keys %Imager::Regops::Attr; my @vars = $self->_variables(); my $result = ''; my $index = 0; while (my @op = splice(@code, 0, 2+$Imager::Regops::MaxOperands)) { my $opcode = shift @op; my $name = $names{$opcode}; if ($name) { $result .= "j$index: $name($opcode)"; my @types = split //, $attr->{$name}{types}; for my $parm (@types) { my $reg = shift @op; $result .= " $parm$reg"; if ($parm eq 'r') { if ($reg < @vars) { $result.= "($vars[$reg])"; } elsif (defined $self->{"nregs"}[$reg]) { $result .= "($self->{\"nregs\"}[$reg])"; } } } $result .= " -> $attr->{$name}{result}$op[-1]" if $attr->{$name}{result}; $result .= "\n"; } else { $result .= "unknown($opcode) @op\n"; } ++$index; } $result; } package Imager::Expr::Postfix; use vars qw(@ISA); @ISA = qw(Imager::Expr); Imager::Expr::Postfix->register_type('rpnexpr'); my %op_names = ( '+'=>'add', '-'=>'subtract', '*'=>'mult', '/' => 'div', '%'=>'mod', '**'=>'pow' ); sub compile { my ($self, $expr, $opts) = @_; $expr =~ s/#.*//; # remove comments my @st_ops = split ' ', $expr; for (@st_ops) { $_ = $op_names{$_} if exists $op_names{$_}; $_ = $self->{constants}{$_} if exists $self->{constants}{$_}; } return $self->stack_to_reg(@st_ops); } package Imager::Expr::Infix; use vars qw(@ISA); @ISA = qw(Imager::Expr); use Imager::Regops qw(%Attr $MaxOperands); { local @INC = @INC; pop @INC if $INC[-1] eq '.'; eval "use Parse::RecDescent;"; __PACKAGE__->register_type('expr') if !$@; } # I really prefer bottom-up parsers my $grammar = <<'GRAMMAR'; code : assigns 'return' expr { $return = [ @item[1,3] ] } assigns : assign(s?) { $return = [ @{$item[1]} ] } assign : identifier '=' expr ';' { $return = [ @item[1,3] ] } expr : relation relation : addition (relstuff)(s?) { $return = $item[1]; for my $op(@{$item[2]}) { $return = [ $op->[0], $return, $op->[1] ] } 1; } relstuff : relop addition { $return = [ @item[1,2] ] } relop : '<=' { $return = 'le' } | '<' { $return = 'lt' } | '==' { $return = 'eq' } | '>=' { $return = 'ge' } | '>' { $return = 'gt' } | '!=' { $return = 'ne' } addition : multiply (addstuff)(s?) { $return = $item[1]; # for my $op(@{$item[2]}) { $return .= " @{$op}[1,0]"; } for my $op(@{$item[2]}) { $return = [ $op->[0], $return, $op->[1] ] } 1; } addstuff : addop multiply { $return = [ @item[1,2] ] } addop : '+' { $return = 'add' } | '-' { $return = 'subtract' } multiply : power mulstuff(s?) { $return = $item[1]; # for my $op(@{$item[2]}) { $return .= " @{$op}[1,0]"; } for my $op(@{$item[2]}) { $return = [ $op->[0], $return, $op->[1] ] } 1; } mulstuff : mulop power { $return = [ @item[1,2] ] } mulop : '*' { $return = 'mult' } | '/' { $return = 'div' } | '%' { $return = 'mod' } power : powstuff(s?) atom { $return = $item[2]; for my $op(reverse @{$item[1]}) { $return = [ @{$op}[1,0], $return ] } 1; } | atom powstuff : atom powop { $return = [ @item[1,2] ] } powop : '**' { $return = 'pow' } atom: '(' expr ')' { $return = $item[2] } | '-' atom { $return = [ uminus=>$item[2] ] } | number | funccall | identifier number : /[+-]?(?:\d+\.?\d*|\.\d+)(?:[eE][+-]?\d+)?/ exprlist : expr ',' exprlist { $return = [ $item[1], @{$item[3]} ] } | expr { $return = [ $item[1] ] } funccall : identifier '(' exprlist ')' { $return = [ $item[1], @{$item[3]} ] } identifier : /[^\W\d]\w*/ { $return = $item[1] } GRAMMAR my $parser; sub init_parser { if (!$parser) { $parser = Parse::RecDescent->new($grammar); } } sub compile { my ($self, $expr, $opts) = @_; if (!$parser) { $parser = Parse::RecDescent->new($grammar); } my $optree = $parser->code($expr); if (!$optree) { $self->error("Error in $expr\n"); return; } @{$self->{inputs}}{$self->_variables} = (); $self->{varregs} = {}; @{$self->{varregs}}{$self->_variables} = map { "r$_" } 0..$self->_variables-1; $self->{"nregs"} = [ (undef) x $self->_variables ]; $self->{"cregs"} = []; $self->{"lits"} = {}; eval { # generate code for the assignments for my $assign (@{$optree->[0]}) { my ($varname, $tree) = @$assign; if (exists $self->{inputs}{$varname}) { $self->error("$varname is an input - you can't assign to it"); return; } $self->{varregs}{$varname} = $self->gencode($tree); } # generate the final result my $result = $self->gencode($optree->[1]); if ($result !~ /^p\d+$/) { $self->error("You must return a color value"); return; } push(@{$self->{genops}}, [ 'ret', $result, (0) x $MaxOperands ]) }; if ($@) { $self->error($@); return; } return $self->{genops}; } sub gencode { my ($self, $tree) = @_; if (ref $tree) { my ($op, @parms) = @$tree; if (!exists $Attr{$op}) { die "Unknown operator or function $op"; } for my $subtree (@parms) { $subtree = $self->gencode($subtree); } my $types = join("", map {substr($_,0,1)} @parms); if (length($types) < length($Attr{$op}{types})) { die "Too few parameters in call to $op"; } if ($types ne $Attr{$op}{types}) { # some alternate operators have the same name followed by p my $opp = $op."p"; if (exists $Attr{$opp} && $types eq $Attr{$opp}{types}) { $op = $opp; } else { die "Call to $_ with incorrect types"; } } my $result; if ($Attr{$op}{result} eq 'r') { $result = "r".@{$self->{nregs}}; push(@{$self->{nregs}}, undef); } else { $result = "p".@{$self->{cregs}}; push(@{$self->{cregs}}, undef); } push(@parms, "0") while @parms < $MaxOperands; push(@{$self->{genops}}, [ $op, @parms, $result]); return $result; } elsif (exists $self->{varregs}{$tree}) { return $self->{varregs}{$tree}; } elsif ($tree =~ /^$numre$/ || exists $self->{constants}{$tree}) { $tree = $self->{constants}{$tree} if exists $self->{constants}{$tree}; if (exists $self->{lits}{$tree}) { return $self->{lits}{$tree}; } my $reg = "r".@{$self->{nregs}}; push(@{$self->{nregs}}, $tree); $self->{lits}{$tree} = $reg; return $reg; } } 1; __END__ =head1 NAME Imager::Expr - implements expression parsing and compilation for the expression evaluation engine used by Imager::transform2() =head1 SYNOPSIS my $code = Imager::Expr->new({rpnexpr=>$someexpr}) or die "Cannot compile $someexpr: ",Imager::Expr::error(); =head1 DESCRIPTION This module is used internally by the Imager::transform2() function. You shouldn't have much need to use it directly, but you may want to extend it. To create a new Imager::Expr object, call: my %options; my $expr = Imager::Expr->new(\%options) or die Imager::Expr::error(); You will need to set an expression value and you may set any of the following: =over =item * constants A hashref defining extra constants for expression parsing. The names of the constants must be valid identifiers (/[^\W\d]\w*/) and the values must be valid numeric constants (that Perl recognizes in scalars). Imager::Expr may define it's own constants (currently just pi.) =item * variables A reference to an array of variable names. These are allocated numeric registers starting from register zero. =back =for stopwords RPN By default you can define a C key (which emulates RPN) or C (an infix expression). It's also possible to write other expression parsers that will use other keys. Only one expression key should be defined. =head2 Instance methods The Imager::Expr::error() method is used to retrieve the error if the expression object cannot be created. =head2 Methods Imager::Expr provides only a few simple methods meant for external use: =for stopwords VM =over =item Imager::Expr->type_registered($keyword) Returns true if the given expression type is available. The parameter is the key supplied to the new() method. if (Imager::Expr->type_registered('expr')) { # use infix expressions } =item $expr->code() Returns the compiled code. =item $expr->nregs() Returns a reference to the array of numeric registers. =item $expr->cregs() Returns a reference to the array of color registers. =item $expr->dumpops() Returns a string with the generated VM "machine code". =item $expr->dumpcode() Returns a string with the disassembled VM "machine code". =back =head2 Creating a new parser I'll write this one day. Methods used by parsers: =over =item compile This is the main method you'll need to implement in a parser. See the existing parsers for a guide. It's supplied the following parameters: =over =item * $expr - the expression to be parsed =item * $options - the options hash supplied to transform2. =back Return an array ref of array refs containing opcodes and operands. =item @vars = $self->_variables() A list (not a reference) of the input variables. This should be used to allocate as many registers as there are variable as input registers. =item $self->error($message) Set the return value of Imager::Expr::error() =item @ops = $self->stack_to_reg(@stack_ops) Converts marginally parsed RPN to register code. =item assemble() Called to convert op codes into byte code. =item numre() Returns a regular expression that matches floating point numbers. =item optimize() Optimizes the assembly code, including attempting common subexpression elimination and strength reducing division by a constant into multiplication by a constant. =item register_type() Called by a new expression parser implementation to register itself, call as: YourClassName->register_type('type code'); where type code is the parameter that will accept the expression. =back =head2 Future compatibility Try to avoid doing your own optimization beyond literal folding - if we add some sort of jump, the existing optimizer will need to be rewritten, and any optimization you perform may well be broken too (well, your code generation will probably be broken anyway ). =head1 AUTHOR Tony Cook , Arnar M. Hrafnkelsson =cut