use strict; use warnings; package Test::Number::Delta; # ABSTRACT: Compare the difference between numbers against a given tolerance our $VERSION = '1.06'; use vars qw (@EXPORT @ISA); # Required modules use Carp; use Test::Builder; use Exporter; @ISA = qw( Exporter ); @EXPORT = qw( delta_not_ok delta_ok delta_within delta_not_within ); #pod =head1 SYNOPSIS #pod #pod # Import test functions #pod use Test::Number::Delta; #pod #pod # Equality test with default tolerance #pod delta_ok( 1e-5, 2e-5, 'values within 1e-6'); #pod #pod # Inequality test with default tolerance #pod delta_not_ok( 1e-5, 2e-5, 'values not within 1e-6'); #pod #pod # Provide specific tolerance #pod delta_within( 1e-3, 2e-3, 1e-4, 'values within 1e-4'); #pod delta_not_within( 1e-3, 2e-3, 1e-4, 'values not within 1e-4'); #pod #pod # Compare arrays or matrices #pod @a = ( 3.14, 1.41 ); #pod @b = ( 3.15, 1.41 ); #pod delta_ok( \@a, \@b, 'compare @a and @b' ); #pod #pod # Set a different default tolerance #pod use Test::Number::Delta within => 1e-5; #pod delta_ok( 1.1e-5, 2e-5, 'values within 1e-5'); # ok #pod #pod # Set a relative tolerance #pod use Test::Number::Delta relative => 1e-3; #pod delta_ok( 1.01, 1.0099, 'values within 1.01e-3'); #pod #pod #pod =head1 DESCRIPTION #pod #pod At some point or another, most programmers find they need to compare #pod floating-point numbers for equality. The typical idiom is to test #pod if the absolute value of the difference of the numbers is within a desired #pod tolerance, usually called epsilon. This module provides such a function for use #pod with L. Usage is similar to other test functions described in #pod L. Semantically, the C function replaces this kind #pod of construct: #pod #pod ok ( abs($p - $q) < $epsilon, '$p is equal to $q' ) or #pod diag "$p is not equal to $q to within $epsilon"; #pod #pod While there's nothing wrong with that construct, it's painful to type it #pod repeatedly in a test script. This module does the same thing with a single #pod function call. The C function is similar, but either uses a global #pod default value for epsilon or else calculates a 'relative' epsilon on #pod the fly so that epsilon is scaled automatically to the size of the arguments to #pod C. Both functions are exported automatically. #pod #pod Because checking floating-point equality is not always reliable, it is not #pod possible to check the 'equal to' boundary of 'less than or equal to #pod epsilon'. Therefore, Test::Number::Delta only compares if the absolute value #pod of the difference is B epsilon (for equality tests) or #pod B epsilon (for inequality tests). #pod #pod =head1 USAGE #pod #pod =head2 use Test::Number::Delta; #pod #pod With no arguments, epsilon defaults to 1e-6. (An arbitrary choice on the #pod author's part.) #pod #pod =head2 use Test::Number::Delta within => 1e-9; #pod #pod To specify a different default value for epsilon, provide a C parameter #pod when importing the module. The value must be non-zero. #pod #pod =head2 use Test::Number::Delta relative => 1e-3; #pod #pod As an alternative to using a fixed value for epsilon, provide a C #pod parameter when importing the module. This signals that C should #pod test equality with an epsilon that is scaled to the size of the arguments. #pod Epsilon is calculated as the relative value times the absolute value #pod of the argument with the greatest magnitude. Mathematically, for arguments #pod 'x' and 'y': #pod #pod epsilon = relative * max( abs(x), abs(y) ) #pod #pod For example, a relative value of "0.01" would mean that the arguments are equal #pod if they differ by less than 1% of the larger of the two values. A relative #pod value of 1e-6 means that the arguments must differ by less than 1 millionth #pod of the larger value. The relative value must be non-zero. #pod #pod =head2 Combining with a test plan #pod #pod use Test::Number::Delta 'no_plan'; #pod #pod # or #pod #pod use Test::Number::Delta within => 1e-9, tests => 1; #pod #pod If a test plan has not already been specified, the optional #pod parameter for Test::Number::Delta may be followed with a test plan (see #pod L for details). If a parameter for Test::Number::Delta is #pod given, it must come first. #pod #pod =cut my $Test = Test::Builder->new; my $Epsilon = 1e-6; my $Relative = undef; sub import { my $self = shift; my $pack = caller; my $found = grep /within|relative/, @_; croak "Can't specify more than one of 'within' or 'relative'" if $found > 1; if ($found) { my ( $param, $value ) = splice @_, 0, 2; croak "'$param' parameter must be non-zero" if $value == 0; if ( $param eq 'within' ) { $Epsilon = abs($value); } elsif ( $param eq 'relative' ) { $Relative = abs($value); } else { croak "Test::Number::Delta parameters must come first"; } } $Test->exported_to($pack); $Test->plan(@_); $self->export_to_level( 1, $self, $_ ) for @EXPORT; } #--------------------------------------------------------------------------# # _check -- recursive function to perform comparison #--------------------------------------------------------------------------# sub _check { my ( $p, $q, $e, $name, @indices ) = @_; my $epsilon; if ( !defined $e ) { $epsilon = $Relative ? $Relative * ( abs($p) > abs($q) ? abs($p) : abs($q) ) : $Epsilon; } else { $epsilon = abs($e); } my ( $ok, $diag ) = ( 1, q{} ); # assume true if ( ref $p eq 'ARRAY' || ref $q eq 'ARRAY' ) { if ( @$p == @$q ) { for my $i ( 0 .. $#{$p} ) { my @new_indices; ( $ok, $diag, @new_indices ) = _check( $p->[$i], $q->[$i], $e, $name, scalar @indices ? @indices : (), $i, ); if ( not $ok ) { @indices = @new_indices; last; } } } else { $ok = 0; $diag = "Got an array of length " . scalar(@$p) . ", but expected an array of length " . scalar(@$q); } } else { $ok = $p == $q || abs( $p - $q ) < $epsilon; if ( !$ok ) { my ( $ep, $dp ) = _ep_dp($epsilon); $diag = sprintf( "%.${dp}f and %.${dp}f are not equal" . " to within %.${ep}f", $p, $q, $epsilon ); } } return ( $ok, $diag, scalar(@indices) ? @indices : () ); } sub _ep_dp { my $epsilon = shift; return ( 0, 0 ) unless $epsilon; $epsilon = abs($epsilon); my ($exp) = sprintf( "%e", $epsilon ) =~ m/e(.+)/; my $ep = $exp < 0 ? -$exp : 1; my $dp = $ep + 1; return ( $ep, $dp ); } sub _diag_default { my ($ep) = _ep_dp( abs( $Relative || $Epsilon ) ); my $diag = "Arguments are equal to within "; $diag .= $Relative ? sprintf( "relative tolerance %.${ep}f", abs($Relative) ) : sprintf( "%.${ep}f", abs($Epsilon) ); return $diag; } #pod =head1 FUNCTIONS #pod #pod =cut #--------------------------------------------------------------------------# # delta_within() #--------------------------------------------------------------------------# #pod =head2 delta_within #pod #pod delta_within( $p, $q, $epsilon, '$p and $q are equal within $epsilon' ); #pod delta_within( \@p, \@q, $epsilon, '@p and @q are equal within $epsilon' ); #pod #pod This function tests for equality within a given value of epsilon. The test is #pod true if the absolute value of the difference between $p and $q is B #pod epsilon. If the test is true, it prints an "OK" statement for use in testing. #pod If the test is not true, this function prints a failure report and diagnostic. #pod Epsilon must be non-zero. #pod #pod The values to compare may be scalars or references to arrays. If the values #pod are references to arrays, the comparison is done pairwise for each index value #pod of the array. The pairwise comparison is recursive, so matrices may #pod be compared as well. #pod #pod For example, this code sample compares two matrices: #pod #pod my @a = ( [ 3.14, 6.28 ], #pod [ 1.41, 2.84 ] ); #pod #pod my @b = ( [ 3.14, 6.28 ], #pod [ 1.42, 2.84 ] ); #pod #pod delta_within( \@a, \@b, 1e-6, 'compare @a and @b' ); #pod #pod The sample prints the following: #pod #pod not ok 1 - compare @a and @b #pod # At [1][0]: 1.4100000 and 1.4200000 are not equal to within 0.000001 #pod #pod =cut sub delta_within($$$;$) { ## no critic my ( $p, $q, $epsilon, $name ) = @_; croak "Value of epsilon to delta_within must be non-zero" if !defined($epsilon) || $epsilon == 0; { local $Test::Builder::Level = $Test::Builder::Level + 1; _delta_within( $p, $q, $epsilon, $name ); } } sub _delta_within { my ( $p, $q, $epsilon, $name ) = @_; my ( $ok, $diag, @indices ) = _check( $p, $q, $epsilon, $name ); if (@indices) { $diag = "At [" . join( "][", @indices ) . "]: $diag"; } return $Test->ok( $ok, $name ) || $Test->diag($diag); } #--------------------------------------------------------------------------# # delta_ok() #--------------------------------------------------------------------------# #pod =head2 delta_ok #pod #pod delta_ok( $p, $q, '$p and $q are close enough to equal' ); #pod delta_ok( \@p, \@q, '@p and @q are close enough to equal' ); #pod #pod This function tests for equality within a default epsilon value. See L #pod for details on changing the default. Otherwise, this function works the same #pod as C. #pod #pod =cut sub delta_ok($$;$) { ## no critic my ( $p, $q, $name ) = @_; { local $Test::Builder::Level = $Test::Builder::Level + 1; _delta_within( $p, $q, undef, $name ); } } #--------------------------------------------------------------------------# # delta_not_ok() #--------------------------------------------------------------------------# #pod =head2 delta_not_within #pod #pod delta_not_within( $p, $q, '$p and $q are different' ); #pod delta_not_within( \@p, \@q, $epsilon, '@p and @q are different' ); #pod #pod This test compares inequality in excess of a given value of epsilon. The test #pod is true if the absolute value of the difference between $p and $q is B epsilon. For array or matrix comparisons, the test is true if I #pod pair of values differs by more than epsilon. Otherwise, this function works #pod the same as C. #pod #pod =cut sub delta_not_within($$$;$) { ## no critic my ( $p, $q, $epsilon, $name ) = @_; croak "Value of epsilon to delta_not_within must be non-zero" if !defined($epsilon) || $epsilon == 0; { local $Test::Builder::Level = $Test::Builder::Level + 1; _delta_not_within( $p, $q, $epsilon, $name ); } } sub _delta_not_within($$$;$) { ## no critic my ( $p, $q, $epsilon, $name ) = @_; my ( $ok, undef, @indices ) = _check( $p, $q, $epsilon, $name ); $ok = !$ok; my ( $ep, $dp ) = _ep_dp($epsilon); my $diag = defined($epsilon) ? sprintf( "Arguments are equal to within %.${ep}f", abs($epsilon) ) : _diag_default(); return $Test->ok( $ok, $name ) || $Test->diag($diag); } #pod =head2 delta_not_ok #pod #pod delta_not_ok( $p, $q, '$p and $q are different' ); #pod delta_not_ok( \@p, \@q, '@p and @q are different' ); #pod #pod This function tests for inequality in excess of a default epsilon value. See #pod L for details on changing the default. Otherwise, this function works #pod the same as C. #pod #pod =cut sub delta_not_ok($$;$) { ## no critic my ( $p, $q, $name ) = @_; { local $Test::Builder::Level = $Test::Builder::Level + 1; _delta_not_within( $p, $q, undef, $name ); } } #pod =head1 SEE ALSO #pod #pod =for :list #pod * L #pod * L #pod #pod =cut 1; __END__ =pod =encoding UTF-8 =head1 NAME Test::Number::Delta - Compare the difference between numbers against a given tolerance =head1 VERSION version 1.06 =head1 SYNOPSIS # Import test functions use Test::Number::Delta; # Equality test with default tolerance delta_ok( 1e-5, 2e-5, 'values within 1e-6'); # Inequality test with default tolerance delta_not_ok( 1e-5, 2e-5, 'values not within 1e-6'); # Provide specific tolerance delta_within( 1e-3, 2e-3, 1e-4, 'values within 1e-4'); delta_not_within( 1e-3, 2e-3, 1e-4, 'values not within 1e-4'); # Compare arrays or matrices @a = ( 3.14, 1.41 ); @b = ( 3.15, 1.41 ); delta_ok( \@a, \@b, 'compare @a and @b' ); # Set a different default tolerance use Test::Number::Delta within => 1e-5; delta_ok( 1.1e-5, 2e-5, 'values within 1e-5'); # ok # Set a relative tolerance use Test::Number::Delta relative => 1e-3; delta_ok( 1.01, 1.0099, 'values within 1.01e-3'); =head1 DESCRIPTION At some point or another, most programmers find they need to compare floating-point numbers for equality. The typical idiom is to test if the absolute value of the difference of the numbers is within a desired tolerance, usually called epsilon. This module provides such a function for use with L. Usage is similar to other test functions described in L. Semantically, the C function replaces this kind of construct: ok ( abs($p - $q) < $epsilon, '$p is equal to $q' ) or diag "$p is not equal to $q to within $epsilon"; While there's nothing wrong with that construct, it's painful to type it repeatedly in a test script. This module does the same thing with a single function call. The C function is similar, but either uses a global default value for epsilon or else calculates a 'relative' epsilon on the fly so that epsilon is scaled automatically to the size of the arguments to C. Both functions are exported automatically. Because checking floating-point equality is not always reliable, it is not possible to check the 'equal to' boundary of 'less than or equal to epsilon'. Therefore, Test::Number::Delta only compares if the absolute value of the difference is B epsilon (for equality tests) or B epsilon (for inequality tests). =head1 USAGE =head2 use Test::Number::Delta; With no arguments, epsilon defaults to 1e-6. (An arbitrary choice on the author's part.) =head2 use Test::Number::Delta within => 1e-9; To specify a different default value for epsilon, provide a C parameter when importing the module. The value must be non-zero. =head2 use Test::Number::Delta relative => 1e-3; As an alternative to using a fixed value for epsilon, provide a C parameter when importing the module. This signals that C should test equality with an epsilon that is scaled to the size of the arguments. Epsilon is calculated as the relative value times the absolute value of the argument with the greatest magnitude. Mathematically, for arguments 'x' and 'y': epsilon = relative * max( abs(x), abs(y) ) For example, a relative value of "0.01" would mean that the arguments are equal if they differ by less than 1% of the larger of the two values. A relative value of 1e-6 means that the arguments must differ by less than 1 millionth of the larger value. The relative value must be non-zero. =head2 Combining with a test plan use Test::Number::Delta 'no_plan'; # or use Test::Number::Delta within => 1e-9, tests => 1; If a test plan has not already been specified, the optional parameter for Test::Number::Delta may be followed with a test plan (see L for details). If a parameter for Test::Number::Delta is given, it must come first. =head1 FUNCTIONS =head2 delta_within delta_within( $p, $q, $epsilon, '$p and $q are equal within $epsilon' ); delta_within( \@p, \@q, $epsilon, '@p and @q are equal within $epsilon' ); This function tests for equality within a given value of epsilon. The test is true if the absolute value of the difference between $p and $q is B epsilon. If the test is true, it prints an "OK" statement for use in testing. If the test is not true, this function prints a failure report and diagnostic. Epsilon must be non-zero. The values to compare may be scalars or references to arrays. If the values are references to arrays, the comparison is done pairwise for each index value of the array. The pairwise comparison is recursive, so matrices may be compared as well. For example, this code sample compares two matrices: my @a = ( [ 3.14, 6.28 ], [ 1.41, 2.84 ] ); my @b = ( [ 3.14, 6.28 ], [ 1.42, 2.84 ] ); delta_within( \@a, \@b, 1e-6, 'compare @a and @b' ); The sample prints the following: not ok 1 - compare @a and @b # At [1][0]: 1.4100000 and 1.4200000 are not equal to within 0.000001 =head2 delta_ok delta_ok( $p, $q, '$p and $q are close enough to equal' ); delta_ok( \@p, \@q, '@p and @q are close enough to equal' ); This function tests for equality within a default epsilon value. See L for details on changing the default. Otherwise, this function works the same as C. =head2 delta_not_within delta_not_within( $p, $q, '$p and $q are different' ); delta_not_within( \@p, \@q, $epsilon, '@p and @q are different' ); This test compares inequality in excess of a given value of epsilon. The test is true if the absolute value of the difference between $p and $q is B epsilon. For array or matrix comparisons, the test is true if I pair of values differs by more than epsilon. Otherwise, this function works the same as C. =head2 delta_not_ok delta_not_ok( $p, $q, '$p and $q are different' ); delta_not_ok( \@p, \@q, '@p and @q are different' ); This function tests for inequality in excess of a default epsilon value. See L for details on changing the default. Otherwise, this function works the same as C. =head1 SEE ALSO =over 4 =item * L =item * L =back =for :stopwords cpan testmatrix url annocpan anno bugtracker rt cpants kwalitee diff irc mailto metadata placeholders metacpan =head1 SUPPORT =head2 Bugs / Feature Requests Please report any bugs or feature requests through the issue tracker at L. You will be notified automatically of any progress on your issue. =head2 Source Code This is open source software. The code repository is available for public review and contribution under the terms of the license. L git clone https://github.com/dagolden/Test-Number-Delta.git =head1 AUTHOR David Golden =head1 COPYRIGHT AND LICENSE This software is Copyright (c) 2014 by David Golden. This is free software, licensed under: The Apache License, Version 2.0, January 2004 =cut