FATE is an extended regression suite on the client-side and a means for results aggregation and presentation on the server-side.
The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary. The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server.
In any way you can have a look at the publicly viewable FATE results by visiting this website:
This is especially recommended for all people contributing source code to FFmpeg, as it can be seen if some test on some platform broke with their recent contribution. This usually happens on the platforms the developers could not test on.
The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server. If you want to submit your results be sure to check that your combination of CPU, OS and compiler is not already listed on the above mentioned website.
In the third part you can find a comprehensive listing of FATE makefile targets and variables.
If you want to run FATE on your machine you need to have the samples in place. You can get the samples via the build target fate-rsync. Use this command from the top-level source directory:
make fate-rsync SAMPLES=fate-suite/ make fate SAMPLES=fate-suite/ |
The above commands set the samples location by passing a makefile variable via command line. It is also possible to set the samples location at source configuration time by invoking configure with ‘–samples=<path to the samples directory>’. Afterwards you can invoke the makefile targets without setting the SAMPLES makefile variable. This is illustrated by the following commands:
./configure --samples=fate-suite/ make fate-rsync make fate |
Yet another way to tell FATE about the location of the sample directory is by making sure the environment variable FATE_SAMPLES contains the path to your samples directory. This can be achieved by e.g. putting that variable in your shell profile or by setting it in your interactive session.
FATE_SAMPLES=fate-suite/ make fate |
Do not put a ’~’ character in the samples path to indicate a home directory. Because of shell nuances, this will cause FATE to fail.
To use a custom wrapper to run the test, pass ‘--target-exec’ to
configure
or set the TARGET_EXEC Make variable.
To submit your results to the server you should run fate through the shell script ‘tests/fate.sh’ from the FFmpeg sources. This script needs to be invoked with a configuration file as its first argument.
tests/fate.sh /path/to/fate_config |
A configuration file template with comments describing the individual configuration variables can be found at ‘doc/fate_config.sh.template’.
The mentioned configuration template is also available here:
slot= # some unique identifier repo=git://source.ffmpeg.org/ffmpeg.git # the source repository samples= # path to samples directory workdir= # directory in which to do all the work #fate_recv="ssh -T fate@fate.ffmpeg.org" # command to submit report comment= # optional description build_only= # set to "yes" for a compile-only instance that skips tests # the following are optional and map to configure options arch= cpu= cross_prefix= as= cc= ld= target_os= sysroot= target_exec= target_path= target_samples= extra_cflags= extra_ldflags= extra_libs= extra_conf= # extra configure options not covered above #make= # name of GNU make if not 'make' makeopts= # extra options passed to 'make' #tar= # command to create a tar archive from its arguments on stdout, # defaults to 'tar c'
Create a configuration that suits your needs, based on the configuration template. The ‘slot’ configuration variable can be any string that is not yet used, but it is suggested that you name it adhering to the following pattern <arch>-<os>-<compiler>-<compiler version>. The configuration file itself will be sourced in a shell script, therefore all shell features may be used. This enables you to setup the environment as you need it for your build.
For your first test runs the ‘fate_recv’ variable should be empty or commented out. This will run everything as normal except that it will omit the submission of the results to the server. The following files should be present in $workdir as specified in the configuration file:
When you have everything working properly you can create an SSH key pair and send the public key to the FATE server administrator who can be contacted at the email address fate-admin@ffmpeg.org.
Configure your SSH client to use public key authentication with that key when connecting to the FATE server. Also do not forget to check the identity of the server and to accept its host key. This can usually be achieved by running your SSH client manually and killing it after you accepted the key. The FATE server’s fingerprint is:
d3:f1:83:97:a4:75:2b:a6:fb:d6:e8:aa:81:93:97:51
76:9f:68:32:04:1e:d5:d4:ec:47:3f:dc:fc:18:17:86
If you have problems connecting to the FATE server, it may help to try out
the ssh
command with one or more ‘-v’ options. You should
get detailed output concerning your SSH configuration and the authentication
process.
The only thing left is to automate the execution of the fate.sh script and the synchronisation of the samples directory.
Download/synchronize sample files to the configured samples directory.
Will list all fate/regression test targets.
Run the FATE test suite (requires the fate-suite dataset).
Verbosity level, can be set to 0, 1 or 2.
Specify or override the path to the FATE samples at make time, it has a meaning only while running the regression tests.
Specify how many threads to use while running regression tests, it is quite useful to detect thread-related regressions.
Specify which threading strategy test, either slice or frame, by default slice+frame
Specify CPU flags.
Specify or override the wrapper used to run the tests.
The TARGET_EXEC option provides a way to run FATE wrapped in
valgrind
, qemu-user
or wine
or on remote targets
through ssh
.
Set to 1 to generate the missing or mismatched references.
make V=1 SAMPLES=/var/fate/samples THREADS=2 CPUFLAGS=mmx fate |